Synthesis and spectroscopic investigations (IR, NMR and Mössbauer) of tin(IV) and organotin(IV) derivatives of bis(pyrazol-1-yl) alkanes: X-ray crystal structures of bis(4-methylpyrazol-1-yl) methane and its dimethyltin(IV) dichloride adduct

Claudio Pettinari ${ }^{\text {a, * }}$, Adriana Lorenzotti ${ }^{\text {a }}$, Gabriella Sclavi ${ }^{\text {a }}$, Augusto Cingolani ${ }^{\text {a }}$, Eleonora Rivarola ${ }^{\text {b }}$, Marcello Colapietro ${ }^{\text {c }}$, Alberto Cassetta ${ }^{\text {d }}$
${ }^{a}$ Dipartimento di Scienze Chimiche, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino, Italy
${ }^{\text {b }}$ Dipartimento di Chimica Inorganica, Università degli Studi di Palermo, via Archirafi 26, 90123 Palermo, Italy
' Dipartimento di Chimica, Università di Roma "La Sapienza", P. le Aldo Moro 5, 00185 Roma, Italy
"Istituto di Strutturistica Chimica ' G. Giacomello", Consiglio Nazionale delle Ricerche, Padriciano 99, 30412 Trieste, Italy

Received 5 December 1994

Abstract

A series of $1: 1$ adducts of the type $\left[(\mathrm{L}) \mathrm{R}_{n} \mathrm{SnX}_{4-n}\right] \cdot \mathrm{zH}_{2} \mathrm{O}$ ($\mathrm{L} \equiv$ bis(4-methylpyrazol-1-yl)methane (L^{4}), bis(3,4,5-trimethylpyrazol-1yl)methane (L^{T}), 1,2-bis(pyrazol-1-yl)ethane (L^{A}) or 1,2-bis(3,5-dimethylpyrazol-1-yl)ethane (L^{B}); $\mathrm{R} \equiv \mathrm{Me}, \mathrm{Et}, \mathrm{Bu}$ or $\mathrm{Ph} ; \mathrm{X} \equiv \mathrm{I}, \mathrm{Br}$ or $\mathrm{Cl}: n=0,1$ or $2 ; z=1,1.5$ or 2$)$, and the likely polynuclear $\left[\left(\mathrm{L}^{\mathrm{A}}\right)_{5}\left(\mathrm{SnCl}_{4}\right)_{4}\right] \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$ and $\left[\left(\mathrm{L}^{\mathrm{B}}\right)_{2}\left(\mathrm{SnCl}_{4}\right)_{3}\right] \cdot \frac{1}{2}\left[\mathrm{Et}_{2} \mathrm{O}\right]$ have been characterized in the solid state and in solution by analyses, spectral (IR, Mössbauer, and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR) data and conductivity measurements. When L^{T} reacts with SnCl_{4}, cleavage of a carbon (sp^{3})-nitrogen bond was observed and the adduct [($3,4,5$-trimethylpyrazole) ${ }_{2} \mathrm{SnCl}_{4}$] was obtained. The diorganotin(IV) complexes generally dissociate in chloroform or in acetone solution, while the trichlorotin(IV) and tetrachlorotin(IV) adducts probably retain the hexacoordinate configuration. The crystal structures of L^{4} and of the adduct $\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right.$] have been determined by X -ray analysis. In the adduct the tin atom is coordinated to two halide atoms, two methyl groups and two N atoms, with trans- $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}$ in a slightly distorted octahedral configuration. The long $\mathrm{Sn}-\mathrm{N}$ bond distance ($2.436(6) \AA$) indicates weak donor ability of the N_{2} donor L^{4}. Comparison is made with the X-ray crystal structures of several $\mathrm{R}_{2} \mathrm{SnX}_{2} \mathrm{~N}_{2}$-type compounds.

Keywords: Tin; X-ray structure; Infrared spectroscopy; Group 14; Pyrazole; NMR

1. Introduction

Poly(pyrazol-1-yl)alkanes (Fig. 1) constitute a family of stable and flexible bidentate ligands, isoelectronic and isosteric with the well-known poly(pyrazol-1yl)borate donors discovered by Trofimenko [1]. The coordinating behaviour of $(\mathrm{pz})_{n}\left(\mathrm{CR}_{4-n}\right)_{m}(n=2$ or 3 ; $m=1$ or 2) towards transition and main group metalions has been extensively investigated [2,3], but much less work has been done on the donor ability of such ligands towards organometallic derivatives of main group elements $[1,4,5]$, although $\operatorname{tin}(\mathrm{IV})$ and organo-

[^0]tin(IV) adducts containing nitrogen ligands are becoming increasingly important because a number of compounds of this type show antitumour activity towards P388 lymphocytic leukaemia in mice [6].

In our previous papers we have described the interaction between the N_{2} donors bis(pyrazol-1-yl)methane (L^{1}) [7], bis(3,5-dimethylpyrazol-1-yl)methane (L^{2}) [8] and 2,2'-bis(pyrazol-1-yl)propane (L^{3}) [8] and several tin(IV) and organotin(IV) acceptors, and we have shown that different reactions take place depending on the nature of the donor and of the tin(IV) derivative.

Extending our interest in the chemistry of tin(IV) [9] and azoles [10], we decided to research the synthesis, analytical and spectroscopic characterization $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$ and ${ }^{119} \mathrm{Sn}$ NMR, IR, and ${ }^{119} \mathrm{Sn}$ Mössbauer spectra) of

Fig. 1. $\mathrm{L}^{1}: n=1 ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H} . \mathrm{L}^{2}: n=1 ; \mathrm{R}=\mathrm{R}^{\prime \prime}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}$. $\mathrm{L}^{3}: n=1 ; \mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H} . \mathrm{L}^{4}: n=1 ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}$. $\mathrm{L}^{\mathrm{T}}: n=1, \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{CH}_{3} . \mathrm{L}^{\mathrm{A}}: n=2 ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H} . \quad \mathrm{L}^{\mathrm{B}}:$ $n=2 ; \mathrm{R}=\mathrm{R}^{\prime \prime}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}$.
new derivatives containing the bidentate nitrogen ligands 1,2-bis(pyrazol-1-yl)ethane ($L^{\text {A }}$), 1,2-bis(3,5-di-methylpyrazol-1-yl)ethane (L^{B}), bis(4-methylpyrazol-1yl)methane $\left(\mathrm{L}^{4}\right)$ and $\operatorname{bis}(3,4,5$-trimethylpyrazol-1yl)methane (L^{T}).

In order to gain insight into the factors controlling the structure and bonding in complexes of the type $\left[(\mathrm{L}) \mathrm{R}_{2} \mathrm{SnX} \mathrm{X}_{2}\right](\mathrm{L}=$ bidentate nitrogen donor), the X-ray crystal structure of $\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]$ was also determined and the results compared with those of L^{4} and of several $\mathrm{R}_{2} \mathrm{SnX}_{2} \mathrm{~N}_{2}$ model compounds.

Comparison is made with the results obtained with tin(IV) and organotin(IV) derivatives of other poly(azol1 -yl)alkanes [4,5,7,8].

2. Experimental section

2.1. Material and methods

The tin(IV) and organotin(IV) halides were purchased from Alfa (Karlsruhe) and Aldrich (Milwaukee) and used as received. The donors 1,2-bis(pyrazol-1yl)ethane (L^{A}), 1,2-bis(3,5-dimethylpyrazol-1-yl)ethane $\left(\mathrm{L}^{\mathrm{B}}\right)$, bis(4-methylpyrazol-1-yl)methane $\left(\mathrm{L}^{4}\right)$ and bis(3,4,5-trimethylpyrazol-1-yl)methane (L^{T}) were prepared according to literature methods [11-14].

The samples for microanalysis were dried in vacuo to constant weight ($20{ }^{\circ} \mathrm{C}$; about 0.1 Torr). Elemental analyses (C, H and N) were performed in house with a Carlo-Erba model 1106 instrument. IR spectra were recorded from 4000 to $100 \mathrm{~cm}^{-1}$ with a Perkin-Elmer System 2000 Fourier transform IR instrument. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra were recorded on a VXR-300 Varian spectrometer operating at room temperature (300 MHz for ${ }^{\mathrm{t}} \mathrm{H}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ and 111.9 MHz for ${ }^{119} \mathrm{Sn}$). Melting points were obtained on an IA 8100 Electrothermal instrument. The electrical conductance of the solutions was measured with a Crison CDTM 522 conductimeter at room temperature. The molecular
weight determinations were performed by the Pascher Mikroanalytisches Laboratorium, Remagen, Germany.
${ }^{119}$ Sn Mössbauer spectra were recorded at liquidnitrogen temperature with an Elscint-Laben spectrometer equipped with an AERE cryostat. A $\mathrm{Ca}^{119} \mathrm{SnO}_{3}$ Mössbauer source of 10 mCi (from the Radiochemical Centre, Amersham, England) moved with constant acceleration and triangular waveform was used.

2.2. Synthesis of the complexes

2.2.1. [Bis(4-methylpyrazol-1-yl)methane] dimethyldichlorotin(IV) (1)

To a stirred diethyl ether solution (25 ml) of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}(440 \mathrm{mg}, 2.0 \mathrm{mmol})$ at room temperature a diethyl ether solution (25 ml) of bis(4-methylpyrazol-$1-\mathrm{yl}$)methane (L^{4}) ($704 \mathrm{mg}, 4.0 \mathrm{mmol}$) was added. A colourless precipitate was formed immediately; it was filtered off, washed with diethyl ether and shown to be 1. Adducts $2-21$ and $23-\mathbf{3 1}$ were obtained similarly.

2.2.2. [1,2-Bis(pyrazol-1-yl)ethane]tetrachlorotin(IV) (22)

Anhydrous $\mathrm{SnCl}_{4}(521 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to a stirred diethyl ether solution (50 ml) of $\mathrm{L}^{\mathrm{A}}(324 \mathrm{mg}$, 2.0 mmol) under N_{2}. A colourless precipitate was obtained immediately. This was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}$ under N_{2} and shown to be 22 .

2.2.3. Bis(3,4,5-trimethylpyrazole)tetrachlorotin(IV) (32)

To a stirred diethyl ether solution of $L^{T}(437 \mathrm{mg}, 2.0$ mmol) a 1 M dichloromethane solution of SnCl_{4} (2.0 $\mathrm{ml}, 2.0 \mathrm{mmol}$) was added. A colourless precipitate was formed, which was filtered off after 1 day and washed with $\mathrm{Et}_{2} \mathrm{O}$; it was shown to be 32 .

2.3. Crystallographic study

2.3.1. L^{4}

A summary of the experimental conditions are reported in Table 1.

Colourless crystals of L^{4} were obtained by slow evaporation from an ether solution. Preliminary investigations were by inspection of oscillation and Weissenberg photographs. The space group was found to be either $C c$ or $C 2 / c$ ($C 2 / c$ after refinement).

A colourless crystal with approximate dimensions $0.2 \times 0.3 \times 0.4 \mathrm{~mm}$ was mounted on a Nicolet R_{3} four circle diffractometer, and accurate lattice parameters were obtained by least-squares refinement of 15 reflections collected in the range $21^{\circ} \leqslant 2 \theta \leqslant 34^{\circ} .1118$ unique reflections were collected in the range $1.5^{\circ} \leqslant 2 \theta \leqslant 55^{\circ}$ by $\omega-2 \theta$ scan data collection, but only 650 , with I greater than $3 \sigma(I)$, were used in the successive refinement.

A continuous decay (of 10%) of the intensity of standard reflections was observed and a correction was made. The data were also corrected for Lorentz and polarization effects, but not for absorption. The structure was solved by direct methods, using the SIR92 computer program [15], and then refined by the full-matrix least squares method using the CRYSTALS package [16].

The structure was first refined isotropically, and then anisotropically with unitary weight. Hydrogen atoms were introduced (and then refined as riding), at positions determined by a Fourier difference map, except for the disordered methyl hydrogen atoms which were introduced at calculated positions by imposing a distance from the bonded atom equal to $0.95 \AA$. A final refinement was performed with an optimized weighting scheme [17-19], as available in CRYSTALS: $w^{-1}=$ $P\left(F_{\mathrm{c}} / F_{\mathrm{c}}^{\max }\right)\left\{1-\left(\left|F_{\mathrm{o}}-F_{\mathrm{c}}\right| /\left[6\left|F_{\mathrm{o}}-F_{\mathrm{c}}\right|_{\text {est }}\right]\right)^{2}\right\}^{2}$ where $P\left(F_{\mathrm{c}} / F_{\mathrm{c}}^{\text {max }}\right)$ is a third-order optimized truncated Cheybishev polynomial with coefficients $a_{1}=0.820, a_{2}=$

Table 1
Crystal data: data collection and refinement of the structure for L^{4}

Formula	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4}$
Formula weight	176.223
Space group	C2/c
Colour	Colourless
$a(\mathrm{~A})$	10.845(4)
$b(\mathrm{~A})$	4.240 (4)
$c(\mathrm{~A})$	$21.062(8)$
$\left.\beta{ }^{(}\right)$	96.06 (3)
$V_{c}^{\prime}\left(\AA^{3}\right)$	963(1)
Z	4
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.216
Crystal size (mm)	$0.2 \times 0.3 \times 0.4$
$\mu(\mathrm{CuK} \alpha)\left(\mathrm{cm}^{-1}\right)$	0.852
Data collection instrument	Nicolet R_{3}
Radiation (monochromated)	Mo $\mathrm{K} \alpha(\lambda=0.7107 \mathrm{~A})$
T of data collection (K)	293
Scan mode	$\omega-2 \theta$
Scan width (${ }^{\circ}$)	1.1 below $\mathrm{K} \alpha_{1}$, 1.3 above $\mathrm{K} \alpha_{2}$
Scan speed (${ }^{\circ} \mathrm{min}^{-1}$)	Minimum, 1.002; Maximum, 14.648
Background/scan ratio	0.5
Data collection range, $\left(^{\circ}\right.$)	$1.5 \leqslant 2 \theta \leqslant 55$
Standards (measured every 100 reflections)	$604,027,227$
Number of unique reflecns measd	1118
Number of data with $I \geqslant 3 \sigma(I)$	650
Refinement	Full-matrix least-squares method on F
Number of parameters refined	60
$R^{\text {a }}$	0.056
$R_{w}{ }^{\text {b }}$	0.063
$S^{\prime \prime}$ (goodness of fit)	1.18
$\begin{aligned} & R=\left(\Sigma\| \| F_{0}\|-k\| F_{\mathrm{c}}\| \|\right) / \Sigma\left\|F_{\mathrm{o}}\right\| \\ & R_{w^{\prime}}=\left[\Sigma w\left(\left\|F_{0}\right\|-k\left\|F_{\mathrm{c}}\right\|\right)^{2} / \Sigma w\right. \\ & S=\left[\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-k\left\|F_{\mathrm{c}}\right\|\right)^{2} /\left(N_{\mathrm{obs}}\right.\right. \end{aligned}$	$]^{2 / 2}$.) $]^{1 / 2}$

Table 2
Crystal data: data collection and refinement of the structure for $\left(\mathrm{L}^{4}\right) \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}$

Formula	$\mathrm{SnCl}_{2} \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4}$
Formula weight	395.89
Space group	$P 2_{1} / m$
Colour	Colourless
$a(\mathrm{~A})$	6.703(9)
$b(\mathrm{~A})$	15.674(9)
$c(\mathrm{~A})$	8.467(8)
$\beta{ }^{(}{ }^{\circ}$)	118.2(3)
$V_{\mathrm{c}}\left(\AA^{\text {¢ }}\right.$)	784(2)
Z	2
$D_{\text {c }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.678
Crystal size (mm)	$0.1 \times 0.3 \times 0.3$
$\mu\left(\right.$ Mo K α) $\left(\mathrm{cm}^{-1}\right)$	19.67
$F(000)$	392
Data collection instrument	Huber CS
Radiation (monochromated)	Mo K $\alpha(\lambda=0.7107 \AA$)
T of data collection (K)	293
Scan mode	ω
Scan width (${ }^{\circ}$)	1.2
Scan speed (${ }^{\circ} \mathrm{min}^{-1}$)	$\min =1.0, \mathrm{max}=30.0$
Background to scan ratio	0.5
Data collection range (${ }^{\circ}$)	$4.0 \leqslant 2 \theta \leqslant 80$
Standards (measured every 100 reflections)	$25-2,033,-253$
Number of unique reflecns measured	1920
Number of data with $I \geqslant 3 \sigma(I)$	1441
Refinement	Full-matrix least-squares method on F
Number of parameters refined	92
$R^{\text {a }}$	0.057
$R_{*}{ }^{\text {b }}$	0.059
$S^{\text {c }}$ (goodness of fit)	0.94

a.b,c See footnotes to Table 1.
0.839 and $a_{3}=0.447$, and $\left|F_{\mathrm{o}}-F_{\mathrm{c}}\right|_{\text {est }}$ is estimated by using the polynomial to fit $\left|F_{\mathrm{o}}-F_{\mathrm{c}}\right|$ against F_{c}.

The final $R=0.056$ and $R_{\mathrm{w}}=0.063$. The r.m.s. shift for the last cycle of refinement was 0.04 . The largest peaks on a final Fourier difference map were 0.23 and -0.26 electrons \AA^{-3}.

2.3.2. $\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]$

A summary of the experimental conditions is reported in Table 2.

Crystals of $\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]$ were obtained by slow evaporation from an ether solution. Preliminary investigations were by inspection of oscillation and Weissenberg photographs, revealing the space group to be either $P 2_{1}$ or $P 2_{1} / m\left(P 2_{1} / m\right.$ after structure solution).

A colourless crystal (approximate dimensions, $0.2 \times$ $0.3 \times 0.4 \mathrm{~mm}$) was mounted on a Huber four-circle diffractometer operating under the control of the CS software [20]. Lattice parameters were obtained by least-squares refinement of 15 reflections in the range $10^{\circ} \leqslant 2 \theta \leqslant 20^{\circ}$. Unique reflections were collected by ω

Table 3
Physical, analytical and conductivity data of derivatives 1-32

Compound and formula ${ }^{\text {a }}$	$\begin{aligned} & \text { Yield } \\ & (\%) \end{aligned}$	Melting point (${ }^{\circ} \mathrm{C}$)	Elemental analysis: Found (calculated) (\%)			Conductivity ${ }^{\text {b }}$		
			C	H	N	Solvent	Concentration	A
$\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]^{\text {c }}$ (1)	40	143-145	33.49	4.60	13.94	Acetone	2.0	2.8
$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Sn}$			(33.37)	(4.58)	(14.15)			
$\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnBr}_{2}\right]^{\text {d }}$ (2)	51	134-137	27.45	3.96	11.23	Acetone	1.0	6.8
$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{Sn}$			(27.25)	(3.74)	(11.56)	DMSO	1.3	31.4
$\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right](3)$	60	150-153	36.98	5.72	13.00	Acetone	1.0	1.0
$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Sn}$			(36.83)	(5.83)	(13.22)	DMSO	1.1	7.8
$\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SnBr}_{2}\right]$ (4)	30	137-140	30.48	4.69	9.96	Acetone	0.9	10.0
$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{Sn}$			(30.45)	(4.32)	(10.92)			
$\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right) \mathrm{SnCl}_{3}\right](5)$	72	318-319	29.12	3.92	12.87	Acetone	1.5	6.2
$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{Sn}$			(28.85)	(3.63)	(13.46)	DMSO	1.1	10.2
$\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right]^{\text {e }}$ (6)	75	170-172	46.83	4.43	10.27	Acetone	1.0	3.0
$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Sn}$			(46.88)	(4.50)	(10.41)	DMSO	1.1	7.4
$\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{C}_{4} \mathrm{H}_{9}\right) \mathrm{SnCl}_{3}\right]$ (7)	71	176-177	34.56	4.97	11.72	Acetone	1.0	5.5
$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Sn}$			(34.06)	(4.62)	(12.22)	DMSO	1.0	12.3
$\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SnCl}_{3}\right](8)$	63	325-329	37.40	3.68	11.60	Acetone	1.5	3.6
$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{Sn}$			(37.66)	(3.58)	(11.71)	DMSO	1.3	7.8
[($\left.\mathrm{L}^{4}\right) \mathrm{SnCl}_{4}{ }^{\text {] }}$ (9)	82	314-315	24.98	3.04	12.95	Acetone	4.0	2.5
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{Sn}$			(24.75)	(2.77)	(12.83)	DMSO	1.2	4.6
[(L^{4}) SnBr_{4}] (10)	90	276-277	17.89	2.09	8.91	Acetone	3.2	3.8
$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{Sn}$			(17.59)	(1.97)	(9.12)	DMSO	0.9	38.1
$\left[\left(\mathrm{L}^{\mathrm{T}}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}-\mathrm{H}_{2} \mathrm{O}\right]^{\mathrm{f}}$ (11)	35	170-171	50.17	5.40	9.23	Acetone	1.1	7.5
$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{OSn}$			(50.54)	(5.43)	(9.43)			
[($\left.\left.\mathrm{L}^{\mathrm{T}}\right)\left(\mathrm{CH}_{3}\right) \mathrm{SnCl}_{3}\right](12)$	64	180 decomposition	35.41	5.17	11.46	Acetone	1.3	37.0
$\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{Sn}$			(35.59)	(4.91)	(11.86)	Acetone	0.3	42.3
$\left[\left(\mathrm{L}^{\mathrm{T}}\right)\left(\mathrm{C}_{4} \mathrm{H}_{9}\right) \mathrm{SnCl}_{3}\right](\mathbf{1 3)}$	63	166-168	39.74	5.82	10.90	Acetone	1.1	20.6
$\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{Sn}$			(39.69)	(5.68)	(10.89)			
$\left[\left(\mathrm{L}^{\mathrm{T}}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SnCl}_{3}\right]-\mathrm{H}_{2} \mathrm{O}(14)$	58	80-130	40.98	5.12	10.44	Acetone	1.0	51.1
${ }_{\text {C }}{ }_{19} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{OSn}$			(41.31)	(4.93)	(10.14)			
$\left[\left(L^{\mathrm{T}}\right) \mathrm{SnBr}_{3} \mathrm{OH}\right](15)$ $\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{Br}_{3} \mathrm{ON} \mathrm{S}_{4} \mathrm{Sn}$	31	166-168	26.13	3.60	9.22	Acetone	1.0	73.6
${ }_{\mathrm{C}}^{13} \mathrm{H}_{21} \mathrm{Br}_{3} \mathrm{ON}_{4} \mathrm{Sn}$			(25.69)	(3.48)	(9.22)			
$\left[\left(\mathrm{L}^{\mathrm{T}}\right) \mathrm{SnI}_{4}\right](16)$	34	140-180	18.35	2.47	5.99	Acetone	1.0	109.6
$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{I}_{4} \mathrm{~N}_{4} \mathrm{Sn}$			(18.19)	(2.35)	(6.53)			
$\left[\left(\mathrm{L}^{\wedge}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]-2 \mathrm{H}_{2} \mathrm{O}(\mathbf{1 7)}$	30	113 decomposition	29.17	4.66	13.05	Acetone	1.3	19.0
$\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{Sn}$			(28.73)	(4.78)	(13.40)			
$\left[\left(\mathrm{L}^{\mathrm{A}}\right)\left(\mathrm{CH}_{3}\right) \mathrm{SnCl}_{3}\right](\mathbf{1 8)}$	60	167-168	27.04	3.40	13.70	Acetone	1.0	15.5
$\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{Sn}$			(26.86)	(3.23)	(13.93)	DMSO	1.2	20.6
$\left[\left(\mathrm{L}^{\mathrm{A}}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right]$ (19)	28	70 decomposition	47.30	4.05	11.21	Acetone	1.0	6.7
$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Sn}$			(47.45)	(3.95)	(11.07)			
$\left[\left(L^{\text {A }}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SnCl}_{3}\right](20)$ $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Cl}_{5} \mathrm{~N}_{4} \mathrm{Sn}$	52	121 decomposition	36.04	3.47	12.36	Acetone	0.8	20.0
			(36.19)	(3.23)	(12.06)			
$\left[\left(\mathrm{L}^{\mathrm{A}}\right)\left(\mathrm{C}_{4} \mathrm{H}_{9}\right) \mathrm{SnCl}_{3}\right](21)$	63	86 decomposition	32.87	4.41	13.76	Acetone	1.3	10.8
$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{Sn}$			(32.42)	(4.28)	(12.61)			
$\left[\left(\mathrm{L}^{\wedge}\right) \mathrm{SnCl}_{4}\right](22)$	70	267-271	23.16	2.44	13.58	Acetone	1.0	25.0
$\mathrm{C}_{8} \mathrm{H}_{40} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{Sn}$			(22.73)	(2.38)	(13.25)			
$\left[\left(\mathrm{L}^{\mathrm{A}}\right)_{5}\left(\mathrm{SnCl}_{4}\right)_{4}\right]-5 \mathrm{H}_{2} \mathrm{O}^{\mathrm{E}}$ (23)	78	120 decomposition	24.82	3.27	14.18	Acetone	0.2	11.0
$\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{Cl}_{16} \mathrm{~N}_{20} \mathrm{O}_{5} \mathrm{Sn}_{4}$			(24.73)	(3.11)	(14.42)	DMSO	0.3	73.3
$\left[\left(\mathrm{L}^{\wedge}\right)\left(\mathrm{SnBr}_{4}\right)\right]^{\text {h }}$ (24)	65	163-164	15.78	1.99	9.63	Acetone	1.0	62.0
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{Sn}$			(16.00)	(1.68)	(9.33)	DMSO	1.1	47.6
$\left[\left(\mathrm{L}^{\mathrm{A}}\right) \mathrm{Snl}_{2}(\mathrm{OH})_{2}\right]^{\mathrm{i}}$ (25)	71	100-102	17.23	2.07	9.73	Acetone	1.0	76.7
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Sn}$			(16.90)	(2.13)	(9.85)			
$\left[\left(\mathrm{L}^{\mathrm{B}}\right)\left(\mathrm{CH}_{3}\right) \mathrm{SnCl}_{3}\right]-2 \mathrm{H}_{2} \mathrm{O}(26)$	25	130-131	31.70	5.04	11.39	Acetone	0.5	7.2
$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Sn}$			(31.48)	(5.06)	(11.33)			
$\left[\left(\mathrm{L}^{\mathrm{B}}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SnCl}_{3}\right]-\mathrm{H}_{2} \mathrm{O}$ (27)	60	135-136	39.52	4.75	10.22	Acetone	1.0	30.5
$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{OSn}$			(40.14)	(4.64)	(10.41)	DMSO	1.0	10.0
$\left[\left(\mathrm{L}^{\mathrm{B}}\right)\left(\mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{SnCl}_{3}\right]-1.5 \mathrm{H}_{2} \mathrm{O}$ (28)	57	132-133	36.72	5.73	10.60	Acetone	0.9	25.4
$\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{ClN}_{4} \mathrm{O}_{15} \mathrm{Sn}$			(36.42)	(5.41)	(10.62)	DMSO	1.0	10.2
$\left[\left(\mathrm{L}^{\mathrm{B}}\right)_{2}\left(\mathrm{SnCl}_{4}\right)_{3}\right]-\frac{1}{2}\left[\mathrm{Et}_{2} \mathrm{O}\right]^{1}(\mathbf{2 9)}$	70	245 decomposition	24.86	3.76	8.57	Acetone	1.0	63.4
$\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{Cl}_{12} \mathrm{~N}_{8} \mathrm{Sn}_{3} \mathrm{O}_{0.5}$			(24.88)	(3.29)	(8.93)	DMSO	0.5	51.2
$\left[\left(\mathrm{L}^{\mathrm{B}}\right) \mathrm{SnBr}_{4}\right]$ (30)	83	200 decomposition	21.82	3.22	8.10	Acetone	1.0	46.0

Table 3 (continued)

Compound and formula ${ }^{\text {a }}$	Yield (\%)	Melting point (${ }^{\circ} \mathrm{C}$)	Elemental analysis: Found (calculated) (\%)			Conductivity ${ }^{\text {b }}$		
			C	H	N	Solvent	Concentration	A
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{Sn}$			(21.94)	(2.74)	(8.53)	DMSO	0.9	30.2
$\left[\left(\mathrm{L}^{\mathrm{B}}\right) \mathrm{SnI}_{4}\right](\mathbf{3 1})$	85	137-138	16.78	2.39	6.71	Acetone	0.3	96.0
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{I}_{4} \mathrm{~N}_{4} \mathrm{Sn}$			(17.07)	(2.15)	(6.63)	DMSO	1.0	41.3
$\left[(\mathrm{pzH})_{2} \mathrm{SnCl}_{4}\right]^{\mathrm{m}}(32)$	48	289-292	29.91	4.34	11.40	Acetone	1.1	50.9
$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{Sn}$			(29.98)	(4.19)	(11.65)			

[^1]scan mode, but only 1441 with I greater than $3 \sigma(I)$ were used during the refinement.

The analysis of the standard reflections showed no decay, and the data reduction was performed as for L^{4}, by using DARX software [21].

The structure was solved by direct methods and then refined, first isotropically (same software as used for L^{4}) and then anisotropically but with weight $w^{-1}=$ $\left[\sigma\left(F_{0}\right)\right]^{2}$. The hydrogen atoms were then introduced at calculated positions, using the same parameter as for L^{4}, and then refined as riding. Extinction [22] and anomalous scattering corrections were included in the calculations. A final refinement with optimized weights was performed as for L^{4} (with coefficients $a_{1}=13.420$, $a_{2}=3.717$ and $a_{3}=10.669$), giving a final $R=0.057$ and $R_{w}=0.059$. The r.m.s. shift for the last cycle was 0.06 .

A final Fourier difference map gave the largest peak (2.6 electrons \AA^{3}) at $0.5 \AA$ from the Sn atom.

All the calculations were performed on a personal computer. The Parst program [23] was used for some geometrical calculations. Scattering factors were used from [24].

3. Results and discussion

Interaction between various tin(IV) and organotin(IV) compounds and an excess of donor in organic solvent (diethyl ether and/or petroleum ether) produces the
compounds $\mathbf{1 - 1 4}, \mathbf{1 6} \mathbf{- 2 4}$ and 26-31 listed in Table 3, according to the reaction

$$
\begin{align*}
& x(\mathrm{~L})+\mathrm{R}_{n} \mathrm{SnX}_{4-n} \cdot \mathrm{H}_{2} \mathrm{O} \\
& \xrightarrow{\mathrm{Et}_{2} \mathrm{O}}\left[(\mathrm{~L})_{x}\left(\mathrm{R}_{n} \mathrm{SnX}_{4-n}\right)_{y}\right] \cdot z \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{align*}
$$

With the exception of 23 and 29 (for which the ligand-to-metal ratios of 5 to 4 and of 2 to 3 respectively suggest the presence of an organic ligand bridging between metal centres), 1:1 adducts were always isolated, even in the presence of a great excess of donor.

It has been previously noted [8] that the reaction of tin(IV) compounds with potentially bidentate N donors may give different products depending on the ligands and/or the stoichiometric ratios employed; the $1: 1$ adduct 22 was obtained only when 1 mol of L^{A} was treated with equimolar quantities of anhydrous SnCl_{4} under reflux in diethyl ether under N_{2}.

When L^{T} reacts with SnBr_{4} and L^{2} reacts with SnI_{4} in diethyl ether, the compounds $\left[\left(\mathrm{L}^{\mathrm{T}}\right) \mathrm{SnBr}_{3} \mathrm{OH}\right]$ (15) and $\left[\left(\mathrm{L}^{\mathrm{A}}\right) \mathrm{SnI}_{2}(\mathrm{OH})_{2}\right]$ (25) respectively are isolated; these contain one and two OH groups in place of the halide, probably because of the presence of traces of moisture.

Various amounts of water from 1 in $\left[\left(\mathrm{L}^{\mathrm{T}}\right)\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ to 1.5 in $\left[\left(\mathrm{L}^{\mathrm{B}}\right)\left(\mathrm{C}_{4} \mathrm{H}_{9}\right) \mathrm{SnCl}_{3}\right]$. $1.5 \mathrm{H}_{2} \mathrm{O}$, to 2 in $\left[\left(\mathrm{L}^{\mathrm{A}}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and finally to 5 in $\left[\left(\mathrm{L}^{\mathrm{A}}\right)_{5}\left(\mathrm{SnCl}_{4}\right)_{4}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ are also probably due to traces of moisture in the starting reagents.

Table 4
Selected IR data of bases and of $\mathbf{1 - 3 2}$

Compound	$\nu\left(\mathrm{cm}^{-1}\right)$			
	$>3000 \mathrm{~cm}^{-1}$	$1600-1500 \mathrm{~cm}^{-1}$	$<600 \mathrm{~cm}^{-1}$	Other data
$\overline{L^{4}}$	3150m, 3085w	1575m	422m, 398w, 346w, 288m, 249m	
1	$\begin{aligned} & 3157 \mathrm{w}, 3110 \mathrm{~m}, \\ & 3098 \mathrm{~m}, 3007 \mathrm{~m} \end{aligned}$	1577w, 1540w	599m, $425 \mathrm{w}, 289 \mathrm{w}, 186 \mathrm{br}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{Cl}), 259 \mathrm{~s} \text { br; } \nu(\mathrm{Sn}-\mathrm{C}), 576 \mathrm{w} ; \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 159 \mathrm{br}, 141 \mathrm{br} \end{aligned}$
2	$3160 \mathrm{w}, 3107 \mathrm{~m}$, 3095sh, 3001sh	1570 vw	598w, 422w, 289m, 226w	$\nu(\mathrm{Sn}-\mathrm{C}), 568 \mathrm{~m} ; \nu(\mathrm{Sn}-\mathrm{Br}), 180 \mathrm{~s}$ br
3	$\begin{aligned} & 3157 \mathrm{w}, 3121 \mathrm{w}, \\ & 3105 \mathrm{~m}, 3091 \mathrm{~m}, \\ & 3015 \mathrm{~m} \end{aligned}$	1576w	600m, $485 \mathrm{w}, 425 \mathrm{w}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 532 \mathrm{w} ; \nu(\mathrm{Sn}-\mathrm{Cl}), 259 \mathrm{~s} \text { br; } \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 151 \mathrm{w}, 139 \mathrm{vw} \end{aligned}$
4	$\begin{aligned} & 3156 \mathrm{w}, 3113 \mathrm{~m} \\ & 3091 \mathrm{~m}, 3004 \mathrm{~m} \end{aligned}$	1576w	598m, 476m, 418w, 226w	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 525 \mathrm{w} ; \nu(\mathrm{Sn}-\mathrm{Br}), 176 \mathrm{br} \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 151 \mathrm{w}, 139 \mathrm{vw} \end{aligned}$
5	$\begin{aligned} & 3158 \mathrm{vw}, 3117 \mathrm{~m} \\ & 3101 \mathrm{~m}, 3032 \mathrm{w} \end{aligned}$	1577w	597m, 424m, 356m, 227w	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 543 \mathrm{w} ; \nu(\mathrm{Sn}-\mathrm{Cl}) ; 311 \mathrm{~s}, 289 \mathrm{~s} \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 165 \mathrm{br}, 152 \mathrm{~m} \end{aligned}$
6	$\begin{aligned} & 3145 \mathrm{w}, 3111 \mathrm{~m}, \\ & 3091 \mathrm{w}, 3068 \mathrm{w} \\ & 3051 \mathrm{w}, 3014 \mathrm{w} \end{aligned}$	1574w	$\begin{aligned} & 605 \mathrm{w}, 599 \mathrm{w}, 560 \mathrm{w}, 420 \mathrm{w}, \\ & 288 \mathrm{~m}, 460 \mathrm{~m}, \end{aligned}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 277 \mathrm{~m} ; \nu(\mathrm{Sn}-\mathrm{Cl}), 277 \mathrm{~m}, 248 \mathrm{~m}, 226 \mathrm{~m} \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 169 \mathrm{br}, 151 \mathrm{w}, 139 \mathrm{vw} \end{aligned}$
7	$\begin{aligned} & 3127 w, 3103 w, \\ & 3032 w \end{aligned}$	1581w, 1548w	431m, 405w, 367w, 453m	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 600 \mathrm{~m} ; \nu(\mathrm{Sn}-\mathrm{Cl}), 301 \mathrm{br}, 277 \mathrm{br} ; \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 152 \mathrm{br}, 141 \mathrm{w} \end{aligned}$
8	$\begin{aligned} & 3125 m, 3113 w, \\ & 3094 w, 3068 w, \\ & 3036 w \end{aligned}$	1577w	$\begin{aligned} & 601 \mathrm{~m}, 433 \mathrm{~m}, 280 \mathrm{~s}, 201 \mathrm{~m}, \\ & 255 \mathrm{~m}, 229 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 279 \mathrm{~s} ; \nu(\mathrm{Sn}-\mathrm{Cl}) ; 304 \mathrm{~s} ; \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 179 \mathrm{~m}, 159 \mathrm{~m}, 152 \mathrm{~m}, 139 \mathrm{~m} \end{aligned}$
9	$\begin{aligned} & 3126 \mathrm{~m}, 3110 \mathrm{w} \\ & 3030 \mathrm{~m} \end{aligned}$	1578w, 1551vw	$596 \mathrm{~m}, 433 \mathrm{~m}, 287 \mathrm{~m}, 202 \mathrm{~m}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{Cl}), 344 \mathrm{sbr}, 328 \mathrm{~s}, 315 \mathrm{w} ; \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 153 \mathrm{~m}, 141 \mathrm{w} \end{aligned}$
10	$\begin{aligned} & 3118 \mathrm{~m}, 3102 \mathrm{w} \\ & 3106 \mathrm{w} \end{aligned}$	1577w	$\begin{aligned} & 594 \mathrm{~m}, 430 \mathrm{~m}, 360 \mathrm{w}, 305 \mathrm{~m}, \\ & 280 \mathrm{w} \end{aligned}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{Br}), 246 \mathrm{~m}, 221 \mathrm{~m} ; \\ & \delta(\mathrm{Sn}-\mathrm{Br}), 169 \mathrm{~b}, 151 \mathrm{w}, 121 \mathrm{w}, 101 \mathrm{~m} \end{aligned}$
$L^{\text {T }}$		1585m, 1575sh	$\begin{aligned} & 565 \mathrm{w}, 528 \mathrm{w}, 516 \mathrm{w}, 390 \mathrm{w}, \\ & 367 \mathrm{w}, 282 \mathrm{mbr}, 230 \mathrm{~m} \end{aligned}$	
11	$3068 \mathrm{vw}, 3043 \mathrm{vw}$	$\begin{aligned} & 1576 \mathrm{~m}, 1540 \mathrm{~m}, \\ & 1508 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 542 \mathrm{~m}, 465 \mathrm{~m}, 458 \mathrm{~s}, \\ & 419 \mathrm{w}, 393 \mathrm{w}, 369 \mathrm{w} \end{aligned}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 272 \mathrm{~s} ; \nu(\mathrm{Sn}-\mathrm{Cl}), 288 \mathrm{~s}, 255 \mathrm{vs}, 232 \mathrm{vs} ; \\ & \delta(\mathrm{Sn}-\mathrm{Cl}): 204 \mathrm{~m}, 151 \mathrm{~m} \end{aligned}$
12		$\begin{aligned} & 1575 \mathrm{~m}, 1558 \mathrm{~m} \\ & 1539 \mathrm{w}, 1508 \mathrm{~m} \end{aligned}$	$570 \mathrm{w}, 419 \mathrm{w}, 373 \mathrm{~m}, 142 \mathrm{br}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{Cl}), 325 \mathrm{~m}, 270 \mathrm{br}, 250 \mathrm{br} \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 206 \mathrm{~m}, 142 \mathrm{br} ; \nu(\mathrm{Sn}-\mathrm{C}), 541 \mathrm{~m} \end{aligned}$
13		1575w	$561 \mathrm{vw}, 537 \mathrm{vw}, 456 \mathrm{~m}$, $230 \mathrm{w}, 152 \mathrm{vw}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 285 \mathrm{br} ; \nu(\mathrm{Sn}-\mathrm{Cl}), 329 \mathrm{~s} ; \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 200 \mathrm{~m}, 152 \mathrm{~s} \text { br } \end{aligned}$
14		1580w, 1540m	$536 \mathrm{~m}, 417 \mathrm{vw}, 376 \mathrm{w}$,	$\nu(\mathrm{Sn}-\mathrm{C}), 615 \mathrm{~m}, 589 \mathrm{~m} ; ~ \nu(\mathrm{Sn}-\mathrm{Cl}), 366 \mathrm{~s}, 273 \mathrm{~s}$ br: $\delta(\mathbf{S n}-\mathbf{C l}), 206 w, 142 \mathrm{~s}$
15		1586w	$517 \mathrm{br}, 296 \mathrm{w}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{Br}), 210 \mathrm{~m} ; \delta(\mathrm{Sn}-\mathrm{Br}), 135 \mathrm{br} ; \\ & \nu(\mathrm{OH}), 3200 \mathrm{br} \end{aligned}$
16		1559 m	514br, 296br, 225s br, 200s br	$\nu(\mathrm{Sn}-\mathrm{I}), 144 \mathrm{~m}, 137 \mathrm{~m}$
$L^{\text {A }}$	3115 m	1515 s	490m, $470 \mathrm{w}, 358 \mathrm{w}$	$\nu\left(\mathrm{CH}_{2}\right), 2955 \mathrm{~m}$
17	$3140 \mathrm{~m}, 3120 \mathrm{~m}$	$1520 \mathrm{~m}, 1510 \mathrm{~m}$	522w, 417s, 341s	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 572 \mathrm{~s} ; \nu(\mathrm{OH}), 3380 \mathrm{br} ; \\ & \nu(\mathrm{Sn}-\mathrm{Cl}): 270-240 \mathrm{br} \end{aligned}$
18	$\begin{aligned} & 3150 \mathrm{w}, 3140 \mathrm{w}, \\ & 3120 \mathrm{~m} \end{aligned}$	1559w, 1542m,	$\begin{aligned} & 480 \mathrm{~m}, 360 \mathrm{~m}, 340 \mathrm{~m} \\ & 1508 \mathrm{w} \end{aligned}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 551 \mathrm{~s}, 541 \mathrm{~s} ; \\ & \nu(\mathrm{Sn}-\mathrm{Cl}), 320 \mathrm{~s}, 305 \mathrm{~s}, 280 \mathrm{~s}, 247 \mathrm{~s} \end{aligned}$
19	$3140 \mathrm{w}, 3120 \mathrm{w}$	$1570 \mathrm{~m}, 1510 \mathrm{~m}$	550w, 460s, 431w, 398w, 351m	$\nu(\mathrm{Sn}-\mathrm{C}): 279 \mathrm{~s} ; \nu(\mathrm{Sn}-\mathrm{Cl}), 270 \mathrm{~s}$ br
20	3120 m	$1560 \mathrm{w}, 1510$ sh, 1500m	$\begin{aligned} & 550 \mathrm{w}, 470 \mathrm{~s}, 419 \mathrm{w}, 398 \mathrm{w}, \\ & 352 \mathrm{~m}, 225 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 280 \mathrm{~m} ; \nu(\mathrm{Sn}-\mathrm{Cl}), 325 \mathrm{~s}, 302 \mathrm{~s} \\ & \delta(\mathrm{Sn}-\mathrm{CI}), 203 \mathrm{~m}, 177 \mathrm{~m}, 151 \mathrm{~m} \end{aligned}$
21	3140 m	1520sh, 1510 m	400 s br, $280 \mathrm{~m}, 247 \mathrm{~m}, 225 \mathrm{~m}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 618 \mathrm{~s} ; \delta(\mathrm{Sn}-\mathrm{Cl}), 203 \mathrm{~m}, 177 \mathrm{~m} \\ & 156 \mathrm{~m} ; \nu(\mathrm{Sn}-\mathrm{Cl}), 352 \mathrm{~m}, 330 \mathrm{~s}, 302 \mathrm{~m} \end{aligned}$
22	3123 m	1558m, 1515w	552w, 445w, 419w, 281m, 245m	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{Cl}), 340 \mathrm{br}, 324 \mathrm{~s}, 300 \mathrm{~s} ; \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 200-150 \mathrm{~s} \text { br } \end{aligned}$
23	3119w	1560w, 1515w	552w, 419w, 281w	$\nu(\mathrm{Sn}-\mathrm{Cl}), 318 \mathrm{~s}$ br; $\nu(\mathrm{OH}): 3300 \mathrm{br}$
24	3120sh, 3100w	1510m	600m, $576 \mathrm{~m}, 351 \mathrm{w}, 300 \mathrm{~m}, 283 \mathrm{~m}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{Br}), 230 \mathrm{~s}, 215 \mathrm{~s} \text { br; } \nu(\mathrm{OH}), 3300-3200 \mathrm{br} \\ & \delta(\mathrm{OH}): 1580 \mathrm{br} \end{aligned}$
25	3127w, 3071w	1525 m	$\begin{aligned} & 397 \mathrm{~m}, 352 \mathrm{~m}, 333 \mathrm{~m}, 295 \mathrm{~m}, \\ & 280 \mathrm{~m}, 247 \mathrm{~m}, 225 \mathrm{w} \end{aligned}$	$\nu(\mathrm{Sn}-\mathrm{I}), 150 \mathrm{~s}, 140 \mathrm{~s}, 124 \mathrm{~s}$
L^{B}	3120w	1515s	460w, 375w, 340w, 295m, 280m	
26	3180w, 3130m	1580w, 1549m	$280 \mathrm{~m}, 254 \mathrm{~m}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 553 \mathrm{~m}, 543 \mathrm{~m} ; \nu(\mathrm{Sn}-\mathrm{Cl}), 300 \mathrm{~m} \\ & \nu(\mathrm{OH}), 3319 \mathrm{br} ; \delta(\mathrm{Sn}-\mathrm{Cl}), 177 \mathrm{~m}, 156 \mathrm{~m} \end{aligned}$
27	$3131 \mathrm{~m}, 3053 \mathrm{~m}$	$\begin{aligned} & 1590 \mathrm{~m}, 1563 \mathrm{~m}, \\ & 151 \mathrm{~m} \end{aligned}$	585m, $430,456 \mathrm{~m}, 232 \mathrm{~m}, 181 \mathrm{~m}$	$\nu(\mathrm{Sn}-\mathrm{C}), 268 \mathrm{~m} ; \nu(\mathrm{Sn}-\mathrm{Cl}): 300 \mathrm{~m}, 291 \mathrm{~m}$; $\nu(\mathrm{OH}), 3349 \mathrm{~s}$ br; $\delta(\mathrm{Sn}-\mathrm{Cl}), 181 \mathrm{~m}, 156 \mathrm{br}$

Table 4 (continued)

Compound	$\nu\left(\mathrm{cm}^{-1}\right)$			
	$>3000 \mathrm{~cm}^{-1}$	$1600-1500 \mathrm{~cm}^{-1}$	$<600 \mathrm{~cm}^{-1}$	Other data
28	3134w	$\begin{aligned} & 1598 \mathrm{~m}, 1560 \mathrm{~m}, \\ & 1515 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 550 \mathrm{~m}, 330 \mathrm{w}, 320 \mathrm{w}, 280 \mathrm{w}, \\ & 250 \mathrm{~m}, 240 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{C}), 620 \mathrm{br} ; \nu(\mathrm{OH}): 3320 \mathrm{br} ; \\ & \nu(\mathrm{Sn}-\mathrm{Cl}), 300 \mathrm{~m}, 290 \mathrm{~m} \end{aligned}$
29	3133m	1591m, 1558w	490s br, 227w, 212w, 161s	$\nu(\mathrm{Sn}-\mathrm{Cl}), 320-280 \mathrm{br}$
30	$3140 \mathrm{~m}, 3129 \mathrm{~m}$	1590m, 1552m	$\begin{aligned} & 528 \mathrm{~m}, 503 \mathrm{~m}, 482 \mathrm{~m}, 469 \mathrm{~m} \\ & 444 \mathrm{~m}, 326 \mathrm{~m}, 280 \mathrm{~m} \end{aligned}$	$\nu(\mathrm{Sn}-\mathrm{Br}), 240 \mathrm{~s}, 220 \mathrm{~s}, 211 \mathrm{~s}, 194 \mathrm{~s}$
31	3123w	$\begin{aligned} & 1559 \mathrm{w}, 1542 \mathrm{w}, \\ & 1508 \mathrm{w} \end{aligned}$	$\begin{aligned} & 550 \mathrm{w}, 524 \mathrm{~m}, 398 \mathrm{w}, 352 \mathrm{~m}, \\ & 280 \mathrm{~m}, 247 \mathrm{w}, 203 \mathrm{w}, 195 \mathrm{w} \end{aligned}$	$\nu(\mathrm{Sn}-\mathrm{I}), 152 \mathrm{~m}, 138 \mathrm{~s}, 134 \mathrm{~s}$
32	3029sh	1578m, 1515m	$539 \mathrm{~m}, 400 \mathrm{~m}, 373 \mathrm{~m}, 280 \mathrm{~s}, 247 \mathrm{~m}$	$\begin{aligned} & \nu(\mathrm{Sn}-\mathrm{Cl}), 337 \mathrm{~s}, 310 \mathrm{~s} ; \nu(\mathrm{N}-\mathrm{H}), 3200 \mathrm{br} \\ & \delta(\mathrm{Sn}-\mathrm{Cl}), 170 \mathrm{~s}, 150 \mathrm{vs} \end{aligned}$

" Nujol mull.
L^{T} reacts with $\mathrm{SnCl}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ according to

32
32 being formed. Reaction (2) is unusual, but recently, cleavage of a carbon $\left(\mathrm{sp}^{3}\right)$-nitrogen bond in L^{3} has been reported in platinum(II) [25], vanadium(IV) and $\operatorname{tin}($ IV) [26] chemistry and it has been hypothesized, in the case of platinum compounds, that an agostic M \cdots H-C "interaction" between the metal and one of the protons of the methyl groups, analogous to that observed in the structure of $\left[\left(\mathrm{L}^{3}\right) \mathrm{PdCl}_{2}\right]$ [27], takes place. In our case such an agostic "interaction" is not possible. However, the bond cleavage observed could be explained by the greater stability of the adduct 32 than the adduct between SnCl_{4} and L^{T}, perhaps owing to the greater steric bulk of the donor bis(3,4,5-trimeth-ylpyrazol-1-yl)methane.

All the compounds, colourless precipitates (with the exception of 16, 25 and 31, which are red, a colour which arises because of charge transfer) were characterized by the analytical data listed in Table 3, together with their melting points, yields and specific conductivities. They are generally soluble in acetone, ethanol, dimethylsulphoxide (DMSO) and acetonitrile, but insol-
uble in water, whereas the diorganotin(IV) derivatives are also soluble in chlorinated solvents. As previously found for tris(pyrazolyl)borates and tetrakis(pyrazolyl)borates [28] no adducts could be isolated under our conditions when trimethyl-, tri- n-butyl- or triphenylchlorotin(IV) was employed, consistent with the low acidity of this organotin(IV) acceptor [29].

3.1. Conductivity data

The complexes 1-11, 13, 17-23 and 26-29 are not electrolytes in acetone, ruling out ionic structures in this solvent or equilibria such as

$$
\begin{align*}
& {\left[(\mathrm{L}) \mathrm{R}_{n} \mathrm{SnX}_{4-n}\right]+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}} \\
& \quad \rightleftharpoons\left[(\mathrm{~L}) \mathrm{R}_{n} \mathrm{SnX}_{3-n}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right\}\right]+\mathrm{X} \tag{3}
\end{align*}
$$

However, according to the molecular weights determined by vapour pressure osometry, the diorganotin complexes 1,2,6 and $\mathbf{1 1}$ are extensively dissociated into the starting reagents (the ratio n of the determined molecular weight to the formula weight, being 0.56 , $0.46,0.50$ and 0.46 respectively in chloroform and 0.70 , $0.65,0.68$ and 0.62 respectively in acetone solution) according to
$\left[(\mathrm{L}) \mathrm{R}_{n} \mathrm{SnX}_{4-n}\right] \stackrel{\mathrm{s}}{\rightleftharpoons}(\mathrm{L})+\mathrm{R}_{n} \mathrm{SnX}_{4-n}$
In acetone solution the remaining compounds 12 , 14-16, 24,25 and 30-32 are partly ionized (the typical 1:1 electrolyte tetra- n-butylammonium bromide has a specific conductivity of $137 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$), and in this case an ionization such as that indicated in Eq. (3) is suggested.

The complexes $\mathbf{3}, 5-9,18,27$ and 28 are not electrolytes even in DMSO solution, whereas 2, 10, 23, 24, 29 and 30, non-electrolytes in acetone, become conducting in DMSO, but the solvation in this case is due to the strongly complexing nature of DMSO.

3.2. IR data

The IR spectra (Table 4) of $\mathbf{1 - 3 1}$ show several bands which may be taken as diagnostic of bis(pyrazol-1-yl)al-

Table 5
${ }^{1}$ H NMR data

Table 5 (continued)

Compound	Solvent	$\delta(\mathrm{ppm})$					
		CH_{2}	4-CH	$3-\mathrm{CH}$	5-CH	CH_{3}	Other data
26	$\mathrm{CD}_{3} \mathrm{OD}$	4.40 s	5.95 s			$1.80 \mathrm{~s}, 2.25 \mathrm{~s}$	$\mathrm{CH}_{3}-\mathrm{Sn}$, not observed
	Acetone	4.50 s	5.95s			$1.90 \mathrm{~s}, 2.25 \mathrm{~s}$	$\begin{aligned} & \mathrm{CH}_{3}-\mathrm{Sn}, 1.45 \mathrm{~s} \\ & \left({ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{1} \mathrm{H}\right): 58.5 \mathrm{~Hz}\right) \end{aligned}$
							$\mathrm{H}_{2} \mathrm{O}, 4.20 \mathrm{~s} \mathrm{br}$
27	Acetone	4.51 s	5.95s			$1.98 \mathrm{~s}, 2.25 \mathrm{~s}$	Ph-Sn, $7.20-8.20 \mathrm{~m}$
28	CDCl_{3}	4.60 s	5.90 s			$1.95 \mathrm{~s}, 2.30 \mathrm{~s}$	$\begin{aligned} & { }^{n} \mathrm{Bu}-\mathrm{Sn}: 0.92 \mathrm{t}, 1.44 \mathrm{ps}, 1.75-1.95 \mathrm{~m}, 2.14-2.28 \mathrm{~m} \\ & \mathrm{H}_{2} \mathrm{O}, 5.3 \mathrm{~s} \end{aligned}$
29	$\mathrm{CD}_{3} \mathrm{OD}$	4.50 s	6.10 s			1.92s, 2.25 s	$\mathrm{H}_{2} \mathrm{O}, 4.96 \mathrm{~s}$ br
30	Acetone	4.65s	6.03 s			$2.00 \mathrm{~s}, 2.25 \mathrm{~s}$	
31	Acetone	4.78 s	6.23 s			$2.24 \mathrm{~s}, 2.38 \mathrm{~s}$	
32	Acetone					$2.00 \mathrm{~s}, 2.57 \mathrm{~s}, 2.73 \mathrm{~s}$	$\mathrm{N}-\mathrm{H}, 7.32 \mathrm{~s}$ br

kane ligands, weak and medium vibrations at about $3100 \mathrm{~cm}^{-1}$ due to $\mathrm{C}-\mathrm{H}$ stretching of the heterocyclic ring, and other more intense vibrations between 1600 and $1500 \mathrm{~cm}^{-1}$ typical of ring breathing [30].

In the far-IR spectra of the dimethyltin(IV) complexes, we assign the strong band at about $570 \mathrm{~cm}^{-1}$ to $\nu_{\text {asym }}(\mathrm{Sn}-\mathrm{C})$, whereas we find no evidence for $\nu_{\mathrm{sym}}(\mathrm{Sn}-$ C), consistent with an approximately linear trans- $(\mathrm{R})_{2}$ configuration [31].

The RSnX_{3} adducts show, as expected [32], a single $\mathrm{Sn}-\mathrm{C}$ stretching vibration at around $270 \mathrm{~cm}^{-1}(\mathrm{R} \equiv$ phenyl), $540 \mathrm{~cm}^{-1}(\mathrm{R} \equiv$ methyl $)$ and $600 \mathrm{~cm}^{-1}(\mathrm{R} \equiv n-$ butyl).

In addition, in the phenyltin(IV) derivatives two weak bands in the $170-300 \mathrm{~cm}^{-1}$ region and other more intense band at about $450 \mathrm{~cm}^{-1}$ can always be detected, which are assigned to "in-plane phenyl ring rotation" (Whiffen's u notation), "out-of-plane phenyl ring bending' (x) and "out-of-plane bending" (y) [33].

The tin-halogen stretching frequencies may be assigned with more certainty. A single broad band at about $260 \mathrm{~cm}^{-1}$ assignable as $\nu(\mathrm{Sn}-\mathrm{Cl})$ is observed for the diorganotin(IV) complexes [34], whereas these are two or three bands between 270 and $300 \mathrm{~cm}^{-1}$ for the trihalide and more than three bands between 350 and $300 \mathrm{~cm}^{-1}$ for the tetrahalidetin(IV) derivatives consistent for the last with a cis structure, analogous to that described [35] for analogous complexes of $2,2^{\prime}$-bipyridine (bipy) and 1,10-phenanthroline (phen).

The ($\mathrm{Sn}-\mathrm{Cl}$) stretching absorptions described in the literature $[35,36]$ for compounds of formula cis$\left[\mathrm{Cl}_{4} \mathrm{Sn}(\mathrm{L})_{2}\right]$ and $\left[\mathrm{Cl}_{4} \mathrm{Sn}(\mathrm{L}-\mathrm{L})\right]$ imply that our ligands are poorer donors than pyridine, bipy and phen. The $\mathrm{Sn}-\mathrm{Cl}$ bond becomes stronger and the $\mathrm{Sn}-\mathrm{Cl}$ stretching frequencies increase as the $\mathrm{Sn}-\mathrm{L}$ bond becomes weaker [37], and in our compounds the $\nu(\mathrm{Sn}-\mathrm{Cl})$ are higher than those detected for SnCl_{4} adducts of other borderline N-donors.

Finally, in the spectra of 10, 15, 24 and 30, we assign the broad bands at about $240 \mathrm{~cm}^{-1}$ to $\nu(\mathrm{Sn}-\mathrm{Br})$, while in the spectra of 16, 25 and 31 the broad bands at about $150 \mathrm{~cm}^{-1}$ are likely to be due to $\nu(\mathrm{Sn}-\mathrm{I})$. These assignments are consistent with those previously reported for other octahedral or pseudo-octahedral tin(IV) halide complexes of nitrogen donors [34-37].

In none of the compounds can the $\mathrm{Sn}-\mathrm{N}$ stretching bands be assigned.

In the IR spectrum of $\mathbf{3 2}$, consistent with the structure proposed, the $\mathrm{N}-\mathrm{H}$ stretching vibration, which shifted to lower frequencies compared with the broad $\nu(\mathrm{N}-\mathrm{H})$ absorption observed (about $3300 \mathrm{~cm}^{-1}$) for 3,4,5-trimethylpyrazole, is also detected.

3.3. NMR data

The ${ }^{1} \mathrm{H}$ (Table 5) and ${ }^{13} \mathrm{C}$ NMR spectra (Table 6) of $\mathbf{1 - 3 1}$ in chloroform solution or, when not possible, in acetone or methanol, support the formulae proposed and show that ligand L has not undergone any structural change upon coordination.

On comparison between the chemical shifts related to the same type of proton in the free bases and in their diorganotin(IV) complexes, and when the molecular weight determinations mentioned above are considered, here is extensive dissociation of this type of adduct in acetone and in chloroform solution. For mono-organotin(IV) halide compounds, when complexation occurs, a downfield displacement of all the signals was observed. Additional support for our hypotheses are by the magnitudes of ${ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)$; for example, the ${ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)$ values for $\mathbf{1 , 2}$ and $\mathbf{1 7}$ are in the range $68-73 \mathrm{~Hz}$ comparable with the values $67-68 \mathrm{~Hz}$ reported for the uncomplexed four-coordinated dimethyltin(IV) chloride or bromide [38], whereas the value for $\mathbf{1 8}(106.5 \mathrm{~Hz})$ is comparable with those previously reported for six-coordinated pseudo-octahedral tin(IV) adducts [39].

The ${ }^{119} \mathrm{Sn}$ NMR data (Table 7) are reported for only some compounds, because the quality of the spectra is sometimes poor owing to the low solubility. The ${ }^{119} \mathrm{Sn}$ NMR chemical shifts of the dimethyltin(IV) and diethyltin(IV) halide derivatives are comparable with that of the corresponding Lewis acid in the same solvent [40] and clearly indicate that this type of complex is extensively dissociated in chloroform solution. Acetone solutions of 7, 14, 22 and 29 show more than one signal (the same multiplicity is often observed in the ${ }^{13} \mathrm{C}$ spectra), but none of the signals corresponds to the starting tin(IV) derivative. Isomers are possible for the organ-
otin(IV) trihalide derivatives in general, but not for adducts of SnCl_{4}, for which an octahedral solid state structure is likely. These complexes may undergo different equilibria in acetone solution, as indicated by conductivity data. For example, both ionized and nonionized species, as in equilibrium (3) are likely to be present.

3.4. ${ }^{1 / 9}$ Sn Mössbauer data

The isomer shift (ISs), quadrupole splittings (QSs), average linewidths $\Gamma^{ \pm}$at half-maximum and calculated $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angles are reported in Table 8.

Table 6
${ }^{13} \mathrm{C}$ NMR data of the ligands and of their complexes

Compound	Solvent	$\delta(\mathrm{ppm})(\mathrm{J}(\mathrm{Hz}))$					
		CH_{2}	C(3)	C(4)	C(5)	CH_{3}	$\mathrm{Sn}-\mathrm{C}$
L^{4}	CDCl_{3}	65.8	141.8	118.1	128.5	9.3	
	Acetone	66.1	141.7	117.9	129.4	9.1	
1	CDCl_{3}	65.6	141.9	118.2	128.7	9.3	8.1
2	CDCl_{3}	65.2	141.3	117.6	128.1	8.4	8.8
3	CDCl_{3}	65.8	141.8	118.2	128.6	9.3	$9.7\left(\mathrm{CH}_{3}\right) ; 19.1\left(\mathrm{CH}_{2}\right)$
4	CDCl_{3}	65.0	141.4	117.6	128.3	8.8	$10.1(44)\left(\mathrm{CH}_{3}\right) ; 19.8\left(\mathrm{CH}_{2}\right)$
5	CDCl_{3}	59.1, 62.6	141.9	117.6	130.2	8.8	NO
6	CDCl_{3}	64.9	141.5	117.6	128.4	8.8	129.6 (88), 131.6 (18), 135.0 (65)
7	CDCl_{3}	61.8	142.1	117.4	131.2	8.7	13.6, 25.4, 27.9, 43.7
8	Acetone	62.9	143.2	118.0	131.8	8.9	$129.2,130.7,135.0,136.4$
		62.4	142.9	114.4	133.0		
9	Acetone	61.1	142.0	117.3	133.7	7.6	
10	Acetone	60.5	141.2	116.7	134.0	7.6	
L^{T}	CDCl_{3}	61.4	147.6	113.1	137.3	$8.5,10.2,12.4$	
	Acetone	60.9	147.5	112.8	137.5	$8.3,10.0,12.3$	
11	CDCl_{3}	61.1	147.9	113.2	137.4	$8.5,10.3,12.4$	130.0 (88), 132.0 (17), 135.6 (64), 139.0
12	Acetone	58.8	NO	NO	NO	$6.9,8.8,11.0$	NO
13	CDCl_{3}	59.8	148.4	114.5	138.5	$8.3,10.5,12.1$	$14.1\left(\mathrm{CH}_{3}\right), 25.9,27.9,30.2\left(\mathrm{CH}_{2}\right)$
14	Acetone	59.5	146.4	111.9	135.7	7.0, 8.8, 10.9	127.2, 128.1, 133.7 (81), 137.0
15	Acetone	60.4	148.3	114.9	140.8	$8.1,10.2,11.7$	
$L^{\text {A }}$	Acetone	51.9	139.7	105.4	130.4		
	CDCl_{3}	51.8	140.2	105.4	130.2		
17	CDCl_{3}	52.3	140.7	106.0	130.9		$9.2\left(\mathrm{CH}_{3}\right)$
18	Acetone	52.6	140.2	106.7	132.4		20.8 s br
	CDCl_{3}	51.8	140.1	105.7	130.8		NO
19	CDCl_{3}	51.8	140.3	105.4	130.3		129.7 (86), 131.8 (18), 135.0 (66), 137.2
20	Acetone	52.6	140.2	106.7	132.4		130.2 (93), 131.8 (19), 136.4 (65), 138.0
21	CDCl_{3}	51.7	139.9	105.8	131.0		13.5, 25.4, 27.3
22	Acetone	52.6	140.0	107.3	133.7		
23	Acetone	52.6	140.0	107.1	133.2		
24	Acetone	52.5	139.5	107.7	134.1		
25	Acetone	51.3	138.6	105.9	131.9		
	CDCl_{3}	48.7	148.1	104.8	140.4	9.5, 13.4	
	Acetone	${ }_{\text {h }} 49.6$	148.2	105.5	140.9	10.1, 14.0	
	$\mathrm{CD}_{3} \mathrm{OD}$	b	149.6	106.1	142.4	9.7, 13.2	
26	$\mathrm{CD}_{3} \mathrm{OD}$	b	149.5	107.5	144.3	$10.2,12.9$	
27	Acetone	48.4	146.9	105.3	141.6	$9.2,12.1$	$128.7,130.3,135.3,136.7$
28	CDCl_{3}	${ }_{\mathrm{b}}^{48.3}$	147.5	105.9	142.3	10.2, 12.9	$13.5,25.5,27.4,29.7$
29	$\mathrm{CD}_{3} \mathrm{OD}$	b	149.3	108.1	145.3	10.5, 12.6	
30	Acetone	49.1	148.1	107.4	144.2	$10.7,13.0$	
31	Acetone	47.6	146.8	106.9	144.2	9.8, 11.4	

NO, not observed.
${ }^{a}$ Chemical shifts from internal TMS.
${ }^{c}$ The singlet of the CH_{2} could not be assigned owing to the presence of several overlapping bands of the solvents.

Table 7
${ }^{114}$ Sn NMR data

Compound	Solvent	δ (ppm) from tetramethyltin(IV) [relative intensity (\%)]
	$30 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$	+137
$\left[\left(\mathrm{L}^{4}\right) \mathrm{Me}_{2} \mathrm{SnCl}_{2}\right](\mathbf{1})$	Acetone	+ 107.4
$\left[\left(L^{A}\right) \mathrm{Me}_{2} \mathrm{SnCl}_{2}\right]-\mathrm{H}_{2} \mathrm{O}$ (17)	CDCl_{3}	+ 101.5
$\mathrm{Me}_{2} \mathrm{SnBr}_{2}{ }^{\text {a }}$	$3-20 \% \mathrm{CHCl}_{3}$	+70
$\left[\left(L^{4}\right) \mathrm{Me}_{2} \mathrm{SnBr}_{2}\right]$ (2)	CDCl_{3}	+66
$\mathrm{Et}_{2} \mathrm{SnCl}_{2}{ }^{\text {a }}$		$+121$
$\left[\left(\mathrm{L}^{4}\right) \mathrm{Et}_{2} \overline{\mathrm{SnCl}}_{2}\right](3)$	CDCl_{3}	+121.9
$\mathrm{Et}_{2} \mathrm{SnBr}_{2}{ }^{\text {a }}$	$20 \% \mathrm{CCl}_{4}$	+96
$\left[\left(\mathrm{L}^{4}\right) \mathrm{Et}_{2} \mathrm{SnBr}_{2}\right](4)$	CDCl_{3}	$+83$
$\mathrm{Ph}_{2} \mathrm{SnCl}_{2}{ }^{\text {a }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-32
$\left[\left(\mathrm{L}^{4}\right) \mathrm{Ph}_{2} \mathrm{SnCl}_{2}\right](6)$	CDCl_{3}	-53.3
$\left[\left(L^{\mathrm{T}}\right) \mathrm{Ph}_{2} \mathrm{SnCl}_{2}\right]-\mathrm{H}_{2} \mathrm{O}(11)$	Acetone	-188.7
$\left[\left(L^{\text {A }}\right) \mathrm{Ph}_{2} \mathrm{SnCl}_{2}\right]$ (19)	CDCl_{3}	-38.2
$\mathrm{MeSnCl}_{3}{ }^{\text {a }}$	Acetone	-150.0
	$3-20 \% \mathrm{CHCl}_{3}$	+21
$\left[\left(\mathrm{L}^{\mathrm{A}}\right) \mathrm{MeSnCl}_{3}\right](\mathbf{1 8})$	Acetone	-227.5
	Acetone	-261.4
	$\mathrm{CD}_{3} \mathrm{OD}$	-400.0
$\mathrm{PhSnCl}_{3}{ }^{\text {a }}$	Acetone	-256.9
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-63
$\left[\left(\mathrm{L}^{\mathrm{T}}\right) \mathrm{PhSnCl}_{3}\right]-\mathrm{H}_{2} \mathrm{O}(14)$	Acetone	$\begin{aligned} & -195.9,197.0,-197.2 \\ & {[\approx 30,40 \text { and } 30 \text { respectively }]} \end{aligned}$
	Acetone	-156.3
$\left[\left(\mathrm{L}^{\mathrm{B}}\right) \mathrm{PhSnCl}_{3}\right]-\mathrm{H}_{2} \mathrm{O}(27)$	Acetone	$-172.09(1 \% \mathrm{P} / \mathrm{V})$
$\left[\left(L^{\text {B }}\right) \mathrm{PhSnCl}_{3}\right]-\mathrm{H}_{2} \mathrm{O}(\mathbf{2 8)}$	Acetone	$-212.8(2 \% \mathrm{P} / \mathrm{V})$
$\mathrm{BuSnCl}_{3}{ }^{\text {a }}$	CDCl_{3}	-3.3
$\left[\left(\mathrm{L}^{4}\right) \mathrm{BuSnCl}_{3}\right](7)$	CDCl_{3}	-450br
	Acetone	$-253.0,-260 \mathrm{br},-423.1,-429.6$ $[\approx 20,20,25 \text { and } 25 \text { respectively }]$
$\mathrm{SnCl}_{4}{ }^{\text {a }}$	Liquid	-150
$\left[\left(L^{4}\right) \mathrm{SnCl}_{4}\right](9)$	Acetone	-649.6
$\left[\left(\mathrm{L}^{\mathrm{A}}\right) \mathrm{SnCl}_{4}\right]$ (22)	Acetone	$\begin{aligned} & -609.2,-609.9,-636.6,-641.9,-678.4 \\ & {[\approx 15,20,20,20 \text { and } 15 \text { respectively] }} \end{aligned}$
$\left[\left(\mathrm{L}^{\mathrm{B}}\right)_{2}\left(\mathrm{SnCl}_{4}\right)_{3}\right] \cdot \frac{1}{2} \mathrm{Et}_{2} \mathrm{O}(29)$	Acetone	$\begin{aligned} & -602.4,-656.5 \\ & {[\approx 45 \text { and } 55 \% \text { respectively] }} \end{aligned}$
$\left[(\mathrm{pzH})_{2} \mathrm{SnCl}_{4}\right](32)$	Acetone	-677.9

Table 8
Mössbauer data

Compound	$\begin{aligned} & \text { IS }^{\mathrm{a}} \\ & \left(\mathrm{~mm} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{QS} \\ & \left(\mathrm{~mm} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \Gamma \pm \\ & \left(\mathrm{mm} \mathrm{~s}^{-1}\right) \end{aligned}$	$\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ $\left(^{\circ}\right)$
$\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right](\mathbf{1})$	1.40 ± 0.05	3.95 ± 0.05	0.91	166
$\left[\left(\mathrm{L}^{\mathrm{T}}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right]-\mathrm{H}_{2} \mathrm{O}(11)$	1.35	3.43	1.09	150
$\left[\left(\mathrm{L}^{\mathrm{A}}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right](19)$	1.34	3.46	0.87	151
$\left[\left(\mathrm{L}^{\mathrm{A}}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SnCl}_{3}\right](21)$	0.92	1.92	1.07	
$\left[\left(\mathrm{L}^{\mathrm{A}}\right) \mathrm{SnBr}_{4}\right](24)$	0.74	0	1.02	
$\left[(\mathrm{LA}) \mathrm{SnI}_{2}(\mathrm{OH})_{2}\right](\mathbf{2 5)}$	0.23	0	1.35	
$\left[\left(\mathrm{L}^{\mathrm{B}}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SnCl}_{3}\right]-\mathrm{H}_{2} \mathrm{O}$ (27)	0.74	1.91	1.12	
$\left[\left(\mathrm{L}^{\mathrm{B}}\right)\left(\mathrm{C}_{4} \mathrm{H}_{9}\right) \mathrm{SnCl}_{3}\right](28)$	0.90	2.08	1.02	
$\left[\left(\mathrm{L}^{\mathrm{B}}\right)_{2}\left(\mathrm{SnCl}_{4}\right)_{3}\right]-\frac{1}{2} \mathrm{Et}_{2} \mathrm{O}(29)$	0.36	0	1.20	
$\left[\left(L^{\mathrm{B}}\right) \mathrm{SnBr}_{4}\right](30)$	0.57	0	1.12	

[^2]

Fig. 2. The molecular structure of L^{4} with atom numbering, as used in the crystallographic work.

The value of the IS decreases on going from four- to six-coordinated species and increases with the covalent character of the tin-ligand bonds. The shifts are typical of $\operatorname{tin}(I V)$ in inorganic and organometallic derivatives. The SnX_{4} complexes 24, 29 and 30 all show less positive IS values than the tetrahalides (IS $=0.84 \mathrm{~mm}$ s^{-1} and $1.05 \mathrm{~mm} \mathrm{~s}^{-1}$ for SnCl_{4} and SnBr_{4} respectively [41]), indicating a decrease in s-electron density and $\mathrm{Sn}-\mathrm{X}$ bond covalency upon coordination. The low IS value of $\mathbf{2 5}$ is attributable to the higher electronegativity of the two OH groups. The same trend is observed in RSnCl_{3} complexes, where the IS value of the phenyl derivative 27 is about $0.2 \mathrm{~mm} \mathrm{~s}^{-1}$ lower than those of the alkyl derivatives 21 and 28 .

Complexes 24, 25, 29 and 30 show a single resonance typical of a cubic symmetry around the tin. The
large values of $\Gamma^{ \pm}$for 25, 29 and $\mathbf{3 0}$ indicate unresolved QS, and the value was calculated for similar complexes [42]. This is due to a distortion from ideal octahedral symmetry, which can arise either on account of the different electron-withdrawing properties of the atoms bound to the tin, or an account of the steric demands of the ligands, which causes the $\mathrm{N}-\mathrm{Sn}-\mathrm{N}$ angle to deviate from 90°.

The RSnCl_{3} and $\mathrm{R}_{2} \mathrm{SnCl}_{2}$ complexes have QS values consistent with six-coordinated structures. The QSs of the $\mathrm{R}_{2} \mathrm{SnCl}_{2}$ derivatives clearly indicate trans $-\mathrm{R}_{2}$ configurations [42,43]. Using the Parish [43] relationship between QS and $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles, the latter have been estimated as 150° and 151° for the phenyl derivatives 11 and 19 respectively.

The calculated $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle $\left(166^{\circ}\right)$ in $\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2^{-}}\right.$

Fig. 3. The molecular structure of $\left(\mathrm{L}^{4}\right) \mathrm{Sn}_{\mathrm{n}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}$ with atom numbering, as used in the crystallographic work.

Table 9
Interatomic distances (\AA) and bond angles (deg) with e.s.d.'s in parentheses, for L^{4}

Distances			
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.349(3)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.398(3)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.357(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.355(3)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.439(3)$	$\mathrm{C}(4)-\mathrm{C}(6)$	$1.497(3)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.320(3)$		
Angles			$103.8(2)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	$111.7(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$127.7(2)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(7)$	$120.4(1)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	$128.5(2)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(7)$	$127.9(2)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	$107.7(2)$
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$103.8(2)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$12.7(3)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$113.0(2)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{N}(1)^{\mathrm{i}}$	112.7
Symmetry code: $2-x, y, 1 / 2-z$			

$\left.\mathrm{SnCl}_{2}\right]$ (1) is fairly near to the angle determined by X -ray analysis $\left(174^{\circ}\right)$.
3.5. Diffraction study of bis(4-methylpyrazol-1yl)methane (L^{4}) and of [\{bis(4-methylpyrazol-1-yl)methane\} dimethyldichlorotin(IV) $\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]$

Fig. 2 shows the structure of the molecule of L^{4}, which lies on a crystallographic two-fold axis passing through the $\mathrm{C}(7)$ atom.

The pyrazole ring is essentially planar (the leastsquares planes of the two pyrazole rings and the displacements of atoms from it are available as supplementary material) with deviation from the best plane, passing through the non-hydrogen atoms in the range ± 0.005 (3) A. The angle between the symmetry-related pyrazole rings is $106.70(7)^{\circ}$. The bond distances and angles are listed in Table 9. We compared the molecular parameters of L^{4} with those reported for similar derivatives and we found that the bond angles agree with the empirical rules of Bonati [44] concerning pyrazoles. The pyrazole ring geometry in L^{4} and in pyrazole [45] are very similar. There are small differences between L^{4} parameters and those of the analogous compound bis(4-nitropyrazol-1-yl)methane [46].

Fig. 3 shows the structure of the adduct 1 which consists of discrete molecules, with the tin atom surrounded by six donor atoms in a slightly distorted octahedral configuration, with a cis arrangement of the chloro ligands and a trans arrangement of the methyl groups. The adduct has a crystallographic mirror plane passing through $\mathrm{Sn}, \mathrm{C}(1), \mathrm{C}(2)$ and $\mathrm{C}(7)$ atoms. The bond distances and angles are listed in Table 10.

The effects of complex formation upon the distances and the angles of pyrazole rings are slight. Only small changes were observed in the molecular parameters of $\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]$ compared with free L^{4} (for instance $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{N}\left(1^{\prime}\right)$ in the complex is 2.5° smaller than in free L^{4}).

The pyrazole ring still maintains its planarity (supplementary material), with maximum deviations of $\pm 0.001(7) \AA$, and the angle between the two planes (that are still symmetry related) is $57.6(2)^{\circ}$.

The angle between the pyrazole ring and the $(\mathrm{Sn}, \mathrm{Cl}$, N) plane is $29.8(2)^{\circ}$ and compares well with the values reported for other N ligands in similar complexes [47]. For instance, trans- $\left[\mathrm{SnMe}_{2} \mathrm{Cl}_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)_{2}\right]$ [48] has an angle between the rings equal to 26° and, as for L^{4}, non-bonding interactions determine the orientation of the ring about the $\mathrm{Sn}-\mathrm{N}$ bond.

The six-membered chelate ring shows a very slightly distorted boat conformation. This is clear from the analysis of the puckering coordinate [49] with $Q=0.691$ (8) $\AA, \phi=0.0(6)^{\circ}$ and $\theta=93.4(6)^{\circ}$ and from the confrontation of q_{2} and q_{3} (which are $0.690(8)$ and -0.041 (7) \AA respectively) with Q. The displacements of the Sn and $\mathrm{C}(7)$ atoms from the plane passing through the four nitrogen atoms are $-0.516(4)$ and -0.6451 (8) A respectively, and the angle between this plane and the pyrazole ring is $29.6(2)^{\circ}$.

In Table 11, selected bond distances and angles of $\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]$ are compared with the values reported for other $\left[\mathrm{R}_{2} \mathrm{X}_{2} \mathrm{~N}_{2} \mathrm{Sn}\right]$ compounds [47,48,50-77]. Several general patterns emerge; for example, all the diorganotin(IV) dihalide derivatives with monodentate nitrogen-donor ligands (I-XII) have a perfect octahedral environment with all-trans coordination. The stereochemistry of the SnR_{2} skeleton in complexes with bidentate N_{2} donor is generally trans or distorted trans, with the exception of the derivatives XXXVI-XXXVIII, where the presence of poor σ-donor aryl groups allows a distorted cis structure. Compounds with chem-

Table 10
Interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses, for $\left[\left(\mathrm{L}^{4}\right) \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

Interatomic distances			
$\mathrm{Sn}(1)-\mathrm{Cl}(1)$	$2.498(2)$	$\mathrm{N}(1)-\mathrm{C}(7)$	$1.471(4)$
$\mathrm{Sn}(1)-\mathrm{N}(2)$	$2.438(6)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.340(5)$
$\mathrm{Sn}(1)-\mathrm{C}(1)$	$2.131(9)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.39(1)$
$\mathrm{Sn}(1)-\mathrm{C}(2)$	$2.111(8)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.371(7)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.345(8)$	$\mathrm{C}(4)-\mathrm{C}(6)$	$1.512(9)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.355(9)$		
Interatomic angles			
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{Cl}(1)^{\mathrm{a}}$	$100.2(1)$	$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(7)$	$125.8(6)$
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{N}(2)$	$91.7(2)$	$\mathrm{Sn}(1)-\mathrm{N}(2)-\mathrm{N}(1)$	$126.8(3)$
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{N}(2)^{a}$	$168.1(1)$	$\mathrm{Sn}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$126.4(4)$
$\mathrm{N}(2)-\mathrm{Sn}(1)-\mathrm{N}(2)^{a}$	$76.4(3)$	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$105.1(6)$
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{C}(1)$	$93.0(3)$	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$111.3(5)$
$\mathrm{N}(2)-\mathrm{Sn}(1)-\mathrm{C}(1)$	$86.3(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$105.1(5)$
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{C}(2)$	$91.0(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	$127.3(6)$
$\mathrm{N}(2)-\mathrm{Sn}(1)-\mathrm{C}(2)$	$88.9(4)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	$127.6(8)$
$\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{C}(2)$	$173.8(6)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$107.2(7)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	$111.4(4)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{N}(1)^{a}$	$110.2(4)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(7)$	$122.8(6)$		

[^3]Table 11
Comparison of structural data for $\left[\mathrm{R}_{2} \mathrm{X}_{2} \mathrm{~N}_{2} \mathrm{Sn}\right]$ compounds

Compound	Bond length (\AA)			Bond angle (${ }^{\circ}$)			Reference
	Sn-C	Sn-N	Sn-X	C-Sn-C	X-Sn-X	$\mathrm{N}-\mathrm{Sn}-\mathrm{N}$	
[(Imidazole) $)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}$] (I)	2.110 (3)	2.312(2)	2.5955(7)	180	180	180	[50]
[(Pyrazole $)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}$] (II)	$2.114(13)$	$2.338(6)$	$2.5700(3)$	180	180	180	[51]
[($3,5-\mathrm{Me}_{2}$ pyrazole $\left.)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]$ (III)	2.11(1), 2.12(1)	$2.379(6)$	2.581(2)	180	180	180	[47]
[(2-Chloroimidazole) $\left.2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]$ (IV)	$2.134(4)$	$2.380(4)$	2.591(2)	180	180	180	[52]
[$\mathrm{Bis}(\mathrm{N}$-methylimidazole $\left.)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right](\mathrm{V})$	$2.118(5)$	$2.329(5)$	2.571(3)	180	180	180	[53]
$\left[(\text { Pyridine })_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right](\mathbf{V I})$	2.15(2)	2.39(2)	2.570(1)	180	180	180	[48]
$\left[(\text { Pyrazole })_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{SnCl}_{2}\right]$ (VII)	2.131(5)	$2.329(5)$	2.592(4)	172.6(2)	176.02(9)	175.0(1)	[54]
	$2.149(5)$	$2.388(5)$	2.587(4)				
$\left[(\text { Pyrazole })_{2}\right.$ (vinyl) $\left.{ }_{2} \mathrm{SnCl}_{2}\right]$ (VIII)	$2.103(13)$	2.322 (5)	$2.565(2)$	180	180	180	[55]
$\left[\left\{\right.\right.$ Pyrazine $\left.\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnBr}_{2}\right\}\right]$ (IX)	2.10(2)	2.40(1)	2.723(3)	180	180	180	[56]
$\left[(\text { Pyridine })_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnBr}_{2}\right](\mathbf{X})$	Not reported	2.34(3)	2.719(5)	180	180	180	[48]
$\left[(\text { Pyrazole })_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnBr}_{2}\right](\mathbf{X I})$	2.13(2)	2.36(1)	2.703(2)	179.0(6)	178.78(7)	175.8(4)	[57]
	2.13(2)	2.34(1)	2.766 (2)				
$\left[(\text { Pyrazole })_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SnBr}_{2}\right]$ (XII)	2.093 (7)	$2.356(4)$	2.746 (1)	180	180	180	[58]
$\left[\left(2,2^{\prime}-\right.\right.$-ipyridiyl) $\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right]$ (XIII)	$2.127(6)$	$2.368(4)$	2.529 (1)	175.8(2)	104.2(3)	69.0(1)	[59]
	2.146 (6)	$2.382(4)$	2.545(1)				
$\left[\left(2,2^{\prime}\right.\right.$ - ipyridyl)($\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right]$ (XIV)	2.151(7)	$2.344(6)$	2.511(2)	173.5(3)	103.5(1)	69.0(2)	[60]
	2.153(8)	$2.375(6)$	2.508(2)				
[(4,4-dimethyl-2,2'-bipyridyl) $\left(p-\mathrm{ClC}_{6} \mathrm{H}_{5}\right)_{2}{ }^{-}$ SnCl_{2} ($\mathbf{X V}$)	2.156(9)	$2.402(8)$	$2.482(5)$	177.4(7)	104.2(2)	68.3(4)	[61]
$\begin{aligned} & {\left[\left(4,4^{\prime} \text { dimethyl-2,2' Bipyridy) }\right)(\text { cyclopenty })_{2}{ }^{-}\right.} \\ & \left.\mathrm{SnCl}_{2}\right](\mathbf{X V I}) \end{aligned}$	2.153(4)	$2.436(3)$	2.507(1)	174.5(1)	107.51(5)	66.49(9)	[62]
	$2.157(4)$	$2.435(3)$					
[1,10-Phenantroline) $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{SnCl}_{2}$] (XVII)	2.09(1)	2.43(1)	2.55(1)	177(2)	105(1)	68(1)	[63]
	2.22(1)	2.35(2)	2.55(1)				
[(4,7-Diphenylphenanthroline) $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}$ -				178.2(2)	109.12(5)	68.9(1)	[64]
	2.173 (5)	2.395 (3)	$2.546(1)$				
$\begin{aligned} & {\left[\left(2,2^{\prime}, 6,6^{\prime}-\text { Bipyrimidine }\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right]} \\ & \text { (XIX) } \end{aligned}$	2.139(7)	2.398(4)	2.466(2)	169.3(2)	103.81(5)	67.9(1)	[65]
	2.141 (7)	$2.413(4)$	$2.451(2)$				
$\left[\left(\left(2,2^{\prime}, 6,66^{\prime} \text {-Bipyrimidine }\right)\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{SnCl}_{2}\right]\right.$	2.14(1)	2.46(1)	2.508(2)	175.1(6)	106.0(1)	66.4(3)	[66]
		$2.472(9)$	2.525 (2)				
$\left[\left(2,2^{\prime}, 6,66^{\prime}-\text { Bipyrimidine }\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right]$		2.446(8)		171.7(5)	107.47(8)	66.4(2)	[67]
	2.134(8)		2.508(2)				
	2.148(9)		2.525(2)				
$\begin{aligned} & \left.\left[\left(2,2^{\prime}, 6,66^{\prime}-\text { Bipyrimidine) }\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right\}_{2}\right] \\ & \text { (XXII) } \end{aligned}$				174.6(4)	108.1(1)	66.0(3)	[67]
	2.15(1)	$2.496(8)$	2.502(4)				
	2.14(1)	$2.500(9)$	$2.495(4)$				
[Bis(4-methylpyrazol-1-yl)methane $\left(\mathrm{CH}_{3}\right)_{2}$ $\left.\mathrm{SnCl}_{2}\right]$ (XXIII)		$2.436(6)$	2.497(2)	174.1(6)	100.3(1)	76.4(3)	This work
	2.125(9)						
	$2.113(8)$						
$\begin{aligned} & \text { [2-(2-Pyridyl)benzimidazole(} \left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right] \\ & \quad \text { (XXIV) } \end{aligned}$	2.114(3)	2.447(2)	2.483(1)	171.9(1)	99.5	68.6(1)	[68]
$\begin{aligned} & \text { [2-(2-Pyridyl)benzothiazole } \left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right] \\ & \quad(\mathbf{X X V}) \end{aligned}$				161.2(4)	100.40(7)	66.6(2)	[69]
	$2.156(8)$	2.494(4)	2.505(2)				
	2.171(11)	2.555(6)	2.461(2)				
$\begin{aligned} & \text { [2-(2-Pyridyl)benzothiazole }\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2} \text {] } \\ & \quad(\mathbf{X X V I}) \end{aligned}$	$2.120(7)$	$2.472(4)$	2.509(2)	164.3(3)	100.63(7)	66.1(2)	[69]
	$2.137(8)$	$2.539(5)$	2.450 (2)				
[(3-(2-Pyridyl)-5,6-diphenyl-1,2,4triazine) $\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right]$ (XXVII)	2.12(2)	2.45(1)	2.451(5)	164.6(5)	103.2(5)	67.9(5)	[70]
	2.15(2)	2.55 (1)	$2.506(5)$				
[(3-(2-Pyridyl)-5,6-diphenyl-1,2,4triazine) $\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right]$ (XXVIII)	$\begin{aligned} & 2.07(2) \\ & 2.11(2) \end{aligned}$	$\begin{aligned} & 2.50(1) \\ & 2.56(1) \end{aligned}$	$\begin{aligned} & 2.470(5) \\ & 2.482(5) \end{aligned}$	$\begin{aligned} & 156.7(5) \\ & 167.0(5) \end{aligned}$	100.0(5)	66.1(5)	[70]
[2-(2'-Pyridy)-6-methylbenzothiazole$\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2}\right]$ (XXIX)				162.8(2)	100.1(0)	65.2(1)	[71]
	2.171(4)	2.472(3)	2.50000)				
	$2.146(5)$	2.498(4)	2.440(1)				

Table 11 (continued)

Compound	Bond length (\AA)			Bond angle (${ }^{\circ}$)			Reference
	Sn-C	Sn -N	$\mathrm{Sn}-\mathrm{X}$	C-Sn-C	X-Sn-X	$\mathrm{N}-\mathrm{Sn}-\mathrm{N}$	
$\left[2-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CHC}_{5} \mathrm{H}_{4} \mathrm{~N}-2-\left(\mathrm{CH}_{3}\right)_{2}-\right.$							
	$2.108(9)$	$2.459(5)$	2.519(2)		100.17(6)		
$\left[\left(\mathrm{CH}_{3}\right) \mathrm{Cl}_{2}\left(2-2{ }^{\prime}\right.\right.$-bipyridil $) \mathrm{Sn}\left(\mathrm{CH}_{2}\right)$ -							
$\left.\mathrm{SnCl}_{2}\left(\mathrm{CH}_{3}\right)\right]$ (XXXI)	2.047(32)	$2.270(26)$	2.609(10)	171.1(13)	100.2(3)	71.5(11)	[73]
	$2.160(32)$	2.372(34)	2.577(11)				
$\left[\left(\mathrm{CH}_{3}\right) \mathrm{Cl}_{2} \mathrm{sSn}\left(\mathrm{CH}_{2}\right)\left(\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{SnCl}_{2}\left(\mathrm{CH}_{3}\right)\right]$							
	2.106(13), 2.121(8)	2.599(6)	$2.457(2)$	158.6(4)	96.9(1)	94.8(3)	
[Bis\{2-phenylazo)phenyl-C $\left.{ }^{1} \mathrm{~N}^{2}\right\} \mathrm{SnCl}_{2}$]							
	2.15(1)	$\begin{aligned} & 2.51(2) \\ & 2.58(2) \end{aligned}$	$\begin{aligned} & 2.445(6) \\ & 2.368(6) \end{aligned}$	149.7(7)	97.4(2)	74.2(4)	[74]
[(N, N-Dimethyl-2,2'-bimidazole $)\left(\mathrm{CH}_{3}\right)_{2}{ }^{-}$							
$\left.\mathrm{SnBr}_{2}\right]$ (XXXIV)	2.11(2)	2.32(1)	2.767(2)	177.7(6)	108.2(1)	69.8(4)	[75]
	2.13(2)	2.29(1)	2.719(2)				
[2,2'-Azopyridine ($\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{SnBr}_{2}\right]$ (XXXV)	2.12 (2)	2.585(17)	2.643 (3)	162.1(9)	95.50(9)	49.4(6)	[76]
	2.19 (3)	2.793(18)	$2.650(3)$				
$\left[\left(2,2^{\prime}\right.\right.$ - Bipyridyl) $\left.(p \text {-tolyl })_{2} \mathrm{SnCl}_{2}\right](\mathbf{X X X V I})$	$2.159(3)$	$2.306(3)$	2.493 (1)	108.7(1)	161.4(1)	69.1(1)	[77]
	2.161(3)	2.374(3)	2.507(1)				
[(4,4-Dimethyl-2, 2'-bipyridyl) $\left(p-\mathrm{ClC}_{6} \mathrm{H}_{5}\right)_{2}{ }^{-}$							
SnCl_{2} (XXXVII)	$2.139(18)$	2.311(12)	2.459(4)	$106.2(6)$	163.5(1)	69.8(4)	[61]
	2.170 (13)	2.327(12)	2.491(4)				
[(4,4-Dimethyl-2,2'-bipyridyl)(p - $\left.\mathrm{ClC}_{6} \mathrm{H}_{5}\right)_{2}{ }^{-}$							
$\left.\mathrm{SnCl}_{2}\right]$ (XXXVIII)	$2.158(7)$	2.322 (6)	2.509(2)	106.3(3)	163.0(1)	69.4(2)	[61]
	$2.183(8)$	2.294(6)	2.475(2)				

ically non-equivalent N -atom donors, namely XXIVXXX, XXXIII and XXXV, generally have more distorted configurations and longer $\mathrm{Sn}-\mathrm{N}$ bonds than those found in the derivatives of symmetrical chelating ligands.

The $\mathrm{Sn}-\mathrm{C}$ and $\mathrm{Sn}-\mathrm{N}$ bond distances in the adducts with monodentate ligands are slightly shorter than those found in complexes with bidentate donors, probably owing to greater steric requirements of the latter molecules.

In our compound, the $\mathrm{Sn}-\mathrm{C}$ (2.131(9) and 2.111(8) \AA) and $\mathrm{Sn}-\mathrm{Cl}$ (2.498(2) \AA) distances are shorter and longer respectively than those reported in the crystal structure of the starting dimethyldichlorotin(IV) ($\mathrm{Sn}-\mathrm{C}$, $2.21(8) \AA ; \mathrm{Sn}-\mathrm{Cl}, 2.40(4) \AA$) [78]. The shortening of the $\mathrm{Sn}-\mathrm{C}$ bond on going from tetracoordinated to pentacoordinated or hexacoordinated $\operatorname{tin}(I V)$ derivatives, which is a consequence of the greater σ-electron density in this bond, is typical of dialkyltin(IV) compounds, whereas an opposite trend is found in the complexes with greater electron withdrawing groups such as the phenyl. The $\mathrm{Sn}-\mathrm{N}$ distance in $\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]$ $(2.436(6) \AA)$ is longer not only with respect to that found in the derivatives with monodentate ligand (e.g. it is $2.338(6) \AA$ in II), but also with respect to those found

Table 12
Compounds obtained from various poly(pyrazol-1-yl)alkanes and tin(IV) and organotin(IV) salts

Acceptor	Molar ratio $n^{\text {a }}$ for the following ligands							
	L^{1}	L^{2}	L^{3}	L^{4}	L^{5}	L^{\top}	L^{\wedge}	$L^{\text {B }}$
$\mathrm{Me}_{2} \mathrm{SnCl}_{2}$	$1^{\text {b.c.d }}$	$1^{\text {b,e,h }}$	1^{g}	$1^{\text {b }}$		$1^{8}(1)$		
$\mathrm{Me}_{2} \mathrm{SnBr}_{2}$				$1{ }^{\text {g }}$				
$\mathrm{Et}_{2} \mathrm{SnCl}_{2}$	$1^{\mathrm{b}, \mathrm{c}}$	$1^{\text {b }}$		1 g				
$\mathrm{Et}_{2} \mathrm{SnBr}_{2}$				$1^{\text {g }}$				
$\mathrm{Pr}_{2} \mathrm{SnCl}_{2}$	$1{ }^{\text {b }}$							
$\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$	$1{ }^{\text {d }}$	$1^{\text {e }}$		1^{g}		$1^{g}(1)$	1^{g}	
$\mathrm{Ph}_{2} \mathrm{SnBr}_{2}$	$1{ }^{\text {d }}$							
MeSnCl_{3}	$1^{\text {c.d }}$	$1^{\text {e }}$	$1^{\text {e }}$	$1{ }^{\mathrm{g}}$		1^{g}	1^{g}	$1^{g}(2)$
BuSnCl_{3}	$1{ }^{\mathrm{c}}$		f,i	1 g		$1{ }^{\text {g }}$	1^{g}	$1^{\mathrm{g}}(1.5)$
PhSnCl_{3}	$1{ }^{\text {d }}$	$1^{\text {e }}$	1^{e}	1^{g}		$1^{g}(1)$	18	$1^{s}(1)$
SnCl_{4}	$1{ }^{\text {d }}$	$1{ }^{\text {e }}$		1^{g}		g. 1	$1 \mathrm{~g}, \mathrm{~m}$	$\frac{2}{3} \mathrm{E}\left[\frac{1}{2} \mathrm{Et}_{2} \mathrm{O}\right]$
SnBr_{4}	$1{ }^{\text {d }}$	е.п	f,i	1^{8}		g.n	1^{g}	1^{g}
SnI_{4}	$1{ }^{\text {d }}$	$1{ }^{\text {e }}$	$1^{\text {e }}$ (1)	1 s		1^{g}	g.n	1^{g}

[^4]in the adducts of bypiridyl and phen (XIII, 2.368(4) \AA; XVIII, $2.391(3) \AA$) consistent with the well-known lower donating ability of this type of ligand with respect to bipy and phen derivatives. The bond angles $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ (173.8(6) ${ }^{\circ}$, $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}\left(100.2(1)^{\circ}\right), \mathrm{C}-\mathrm{Sn}-\mathrm{Cl}$ (91.0(3) and $\left.93.0(3)^{\circ}\right)$ and $\mathrm{C}-\mathrm{Sn}-\mathrm{N}\left(86.3(4)\right.$ and $\left.88.9(4)^{\circ}\right)$ are comparable with those reported for the analogous diorganotin(IV) derivatives, whereas the $\mathrm{N}-\mathrm{Sn}-\mathrm{N}$ bond angle is larger. This difference is due to the fact that a six-membered chelate ring is present in $\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2}-\right.$ SnCl_{2}], whereas all the other compounds with bidentate nitrogen donor ligands reported in Table 11 have a five-membered chelate ring.

3.6. Conclusion

In all the tin(IV) and organotin(IV)poly(pyrazol-1yl)alkane derivatives reported to date (Table 12), the ligand: metal ratio n goes from $2: 3$ in $\left(\mathrm{L}^{\mathrm{B}}\right)_{2}\left(\mathrm{SnCl}_{4}\right)_{3}$ $\left.\cdot \frac{1}{2}\left[\mathrm{Et}_{2} \mathrm{O}\right]\right)$ to $3: 2$ in $\left[\left(\mathrm{L}^{2}\right)_{3}\left(\mathrm{Me}_{2} \mathrm{SnCl}_{2}\right)_{2}\right]$.

A ligand can bind to an acceptor in more than one way; for example, treatment of an excess of L^{2} with dimethyldichlorotin(IV) gave a deep-yellow $3: 2$ adduct whereas, when an equimolar quantity of L^{2} and $\mathrm{Me}_{2} \mathrm{SnCl}_{2}$ was used, a colourless 1:1 adduct was found.

The solubility of the compounds obtained is limited to chlorinated solvents (diorganotin(IV)halides), acetone and DMSO (organotin(IV)trihalides and tin(IV)tetrahalides). The existence of adducts of L^{1}, L^{2} and L^{4} but not of L^{A} and L^{B} with the low acid diorganotin(IV) acceptors, suggests that the poly(pyrazol-1-yl)methanes are better donors than poly(pyrazol-1-yl)ethanes. The sterically hindered L^{3} is probably the weakest donor studied by us to date.

The weakness of the bonding between this family of ligands and tin and organotin(IV) acceptors is demonstrated by the fact that all the complexes reported are partially or completely dissociated in acetone and in chlorinated solvents, but it is also demonstrated by the longer $\mathrm{Sn}-\mathrm{N}$ bond distances observed in the solid state in the crystal structure of $\left[\left(\mathrm{L}^{4}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}\right]$. This is of particular interest because it has been reported [6] that diorganotin(IV) compounds active towards P388 lymphocytic leukaemia tumour generally have average $\mathrm{Sn}-\mathrm{N}$ bond lengths of $2.39 \AA$ or greater, while those averaging in $2.39 \AA$ or less were inactive.

4. Supplementary material

Tables of anisotropic thermal parameters for non-hydrogen atoms, tables of the least-squares planes of the two pyrazole ring and the displacements of atoms from it, tables of atomic coordinates and isotropic thermal parameters, as well as hydrogen atom parameters have been deposited at the Cambridge Crystallographic Data Centre.

Acknowledgements

Financial support by the Ministero dell'Università e della Ricerca Scientifica e Tecnologica and by Consiglio Nazionale delle Ricerche Rome is acknowledged.

References

[1] S. Trofimenko, J. Am. Chem. Soc., 89 (1967) 3177; J. Am. Chem. Soc., 89 (1967) 6288; J. Am. Chem. Soc., 91 (1969), 588.
[2] S. Trofimenko, J. Am. Chem. Soc., 92 (1979) 5118; K.-B. Shiu, K.-S. Liou, S.-L. Wang, C.P. Cheng and F.-J. Wu, J. Organomet. Chem., 359 (1989) C1.
[3] P.K. Byers, T. Honeyman, J. Organomet. Chem., 387 (1990) 247; P.K. Byers, A.J. Canty, N.S. Minchin, L.M. Engelhardt, B.W. Skelton, and A.H. White, J. Chem. Soc., Dalton Trans., (1986) 645.
[4] M.A. Mesubi and R.E. Enemo, Spectrochim. Acta, Sect. A, 38 (1982) 599.
[5] R. Visalakshi, V.K. Jain, S.K. Kulshreshtha and G.S. Rao, Inorg. Chim. Acta, I18 (1986) 119.
[6] A.J. Crowe, P.J. Smith and G. Atassi, Inorg. Chim. Acta, 93 (1984) 179; C.J. Cardin and A. Roy, Inorg. Chim. Acta, 107 (1985) 57.
[7] G. Gioia Lobbia, A. Cingolani, D. Leonesi, A. Lorenzotti and F. Bonati, Inorg. Chim. Acta, 130 (1987) 203.
[8] G. Gioia Lobbia, F. Bonati, A. Cingolani, D. Leonesi and A. Lorenzotti, J. Organomet. Chem., 359 (1989) 21.
[9] C. Pettinari, G. Rafaiani, G. Gioia Lobbia, A. Lorenzotti, F. Bonati and B. Bovio, J. Organomet. Chem., 405 (1991) 75; C. Pettinari, F. Bonati, A. Cingolani, G. Gioia Lobbia and F. Marchetti, Gazz. Chim. Ital., I22 (1992) 261.
[10] A. Lorenzotti, F. Bonati, A. Cingolani, D. Leonesi and C. Pettinari., Gazz. Chim. Ital., 121 (1991) 551; C. Pettinari, A. Lorenzotti, A. Cingolani, D. Leonesi, M. Marra and F. Marchetti, Gazz. Chim. Ital., 123 (1993) 481.
[11] A. Lorenzotti, P. Cecchi, C. Pettinari, D. Leonesi and F. Bonati, Gazz. Chim. Ital., 121 (1991) 89.
[12] C. Pettinari, F. Marchetti, A. Lorenzotti, G. Gioia Lobbia, D. Leonesi and A. Cingolani, Gazz. Chim. Ital., 124 (1994) 51.
[13] C. Pettinari, C. Santini, D. Leonesi and P. Cecchi, Polyhedron, 13 (1994) 1553.
[14] C. Pettinari, G. Gioia Lobbia, A. Lorenzotti and A. Cingolani, Polyhedron, (1994) in press.
[15] A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 26 (1993) 343.
[16] D.J. Watkin, J.R. Carruthers and P.W. Bettridge, CRISTAL User Guide. Chemical Crystallography Laboratory, University of Oxford, Oxford, 1985.
[17] J.R. Carruthers and D.J. Watkin, Acta Crystallogr., Sect. A, 35 (1979) 698.
[18] D.J. Watkin, Acta Crystallogr., Sect. A, 50 (1994) 411.
[19] E. Prince and P.T. Boggs, in A.J.C. Wilson (ed.), International Tables for Crystallography, Vol. C, Kluwer, Dordrecht, 1992.
[20] M. Colapietro, G. Cappuccio, C. Marciante, A. Pifferi, R. Spagna and J.R. Helliwell, J. Appl. Crystallogr., 25 (1992), 192.
[21] A. Pifferi, unpublished, 1994.
[22] A.C. Larson, in F.R. Ahmed, S.R. Hall and C.P. Huber (eds.), Crystallographic Computing, Munksgaard, Copenhagen, 1990, p. 291.
[23] M. Nardelli, Comput. Chem., 7 (1983), 95.
[24] A.J. Wilson (ed.), International Tables for Crystallography, Vol. C, Kluwer, Dordrecht, 1992.
[25] M.A. Cinellu, S. Stoccoro, G. Minghetti, A.L. Bandini, G. Banditelli and B. Bovio, J. Organomet. Chem., 372 (1989) 311.
[26] C. Pettinari and B. Bovio, A. Cingolani, unpublished results, 1994.
[27] G. Minghetti, M.A. Cinellu, A.L. Bandini, G. Banditelli, F. Demartin and M. Manassero, J. Organomet. Chem., 315 (1986) 387.
[28] G. Gioia Lobbia, F. Bonati, P. Cecchi and D. Leonesi, J. Organomet. Chem., 391 (1990) 155; G. Gioia Lobbia, F. Bonati, P. Cecchi, A. Lorenzotti and C. Pettinari, J. Organomet. Chem., 403 (1991) 317.
[29] P.G. Harrison, Compounds of tin: general trends in P.G. Harrison (ed.), Chemistry of Tin, Chapman and Hall, London, 1989, Chapter 2, pp. 9-59.
[30] G. Nieuwpoort, J.G. Vos and W.L. Groeneveld, Inorg. Chim. Acta, 29 (1978) 117.
[31] J.P. Clark and C.J. Wilkins, J. Chem. Soc. A, (1966) 871.
[32] R.J.H. Clark, A.G. Davies and R.J. Puddephatt, J. Chem. Soc. A, (1968) 1828.
[33] A.L. Smith, Spectrochim. Acta, Sect. A, 24 (1968) 695; J.R. May and W.R. McWhinnie, Spectrochim. Acta, Sect. A, 27 (1971) 969.
[34] D.L. Alleston and A.G. Davies, J. Chem. Soc., (1961) 2050.
[35] N. Ohkaku and K. Nakamoto, Inorg. Chem., 12 (1973) 2440.
[36] I.R. Beattie and G.P. McQuillan, J. Chem. Soc., (1963) 1519.
[37] M.F. Farona, Inorg. Chem., 14 (1975) 2020.
[38] P.G. Harrison, Investigating tin compounds using spectroscopy, in P.G. Harrison (ed.), Chemistry of Tin, Chapman and Hall, London, 1989, Chapter 3, pp. 61-115.
[39] T.P. Lockhart and W.F. Manders, Inorg. Chem., 25 (1986) 892.
[40] B. Wrackmeyer, Annu. Rep. NMR Spectrosc., 16 (1985) 73.
[41] P.A. Flinn, Tin isomer shift, in G.K. Shenoy and F.E. Wagner (eds.), Mössbauer Isomer Shift, North-Holland, Amsterdam, 1978, p. 593.
[42] G. Gioia Lobbia, P. Cecchi, S. Calogero and F.E. Wagner, J. Organomet. Chem., 436 (1992) 35.
[43] R.V. Parish, Structure and bonding in tin compounds, in G.J. Long (ed.), Mössbauer Spectroscopy Applied in Inorganic Chemistry, Vol. 1, Plenum, New York, 1984, p. 528.
[44] F. Bonati, Gazz. Chim. Ital., 119 (1989) 291.
[45] T. La Cour and S.E. Rasmussen, Acta Chem. Scand., 27 (1973) 1845.
[46] F. Bonati and B. Bovio, J. Cryst. Spectrosc. Res., 20 (1990) 233.
[47] R. Graziani, U. Casellato, R. Ettorre and G. Plazzogna, J. Chem. Soc., Dalton Trans., (1982) 805.
[48] L.A. Aslanov, V.M. Ionov, V.M. Attiya, A.B. Permin and V.S. Petrosyan, Zh. Strukt. Khim., 19 (1978) 185.
[49] D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97 (1975) 1354.
[50] E. Garcìa Martìnes, A. Sànchez Gonzàles, A. Macìas, M.V. Castano, J.S. Casas and J. Sordo, J. Organomet. Chem., 385 (1990) 329.
[51] G. Valle, R. Ettorre, V. Peruzzo and G. Plazzogna, J. Organomet. Chem., 326 (1987) 169.
[52] U. Casellato, R. Graziani and A. Sànchez Gonzàles, Acta Crystallogr., Sect. C, 48 (1992) 2125.
[53] R. Bardi, A. Piazzesi, R. Ettorre and G. Plazzogna, J. Organomet. Chem., 270 (1984) 171.
[54] A. Sànchez Gonzàles, J.S. Casas, J. Sordo and G. Valle, J. Organomet. Chem., 435 (1992) 29.
[55] V. Peruzzo, G. Plazzogna and G. Valle, J. Organomet. Chem., 375 (1989) 167.
[56] E. Rivarola, M. Camalli and F. Caruso, Inorg. Chim. Acta, 126 (1987) 1.
[57] B. Alberte, A. Sànchez Gonzàles, E. Garcìa, J.S. Casas and J. Sordo, J. Organomet. Chem., 338 (1988) 187.
[58] A. Sànchez Gonzàles, B. Alberte, J.S. Casas, J. Sordo, A. Castineiras, W. Hiller and J. Strahle, J. Organomet. Chem., 353 (1988) 169.
[59] S.L. Chadha, P.G. Harrison and K.C. Molloy, J. Organomet. Chem., 202 (1980) 247.
[60] P.G. Harrison, T.J. King and J.A. Richards, J. Chem. Soc., Dalton Trans., (1974) 1723.
[61] V.G. Kumar Das, Y.C. Keong, C. Wei, P.J. Smith and T.C.W. Mak, J. Chem. Soc., Dalton Trans., (1987) 129.
[62] O.G. Chee, L.K. Mun and V.G. Kumar Das, Main Group Met. Chem., 16 (2) (1993) 101.
[63] P. Ganis, V. Peruzzo and G. Valle, J. Organomet. Chem., 256 (1983) 245.
[64] S.-Z. Hu, W.-F. Lin Wenfeng, J.-H. Wan and Z.-X. Huang, Jiegои Ниахие, 8 (1) (1989) 36.
[65] F. Caruso, M. Giomini, A.M. Giuliani and E. Rivarola, J. Organomet. Chem., 466 (1994) 69.
[66] J. Costamagna, J. Canalas, J. Vargas, M. Camalli, F. Caruso and E. Rivarola, Pure and Appl. Chem., 65 (7) (1993) 1521.
[67] F. Caruso, M. Giomini, A.M. Giuliani and E. Rivarola, to be published.
[68] T.A. Kabanos, A.D. Keramidas, D. Mentzafos, U. Russo, A. Terzis and J.M. Tsangaris, J. Chem. Soc., Dalton Trans., (1992) 2729.
[69] S.-Z. Hu, D.-S. Shi, T.-S. Huang, J.-Z. Wan, Z.-X. Huang, J.-L. Yang, and C.-H. Xu, Inorg. Chim. Acta 173 (1990) 1.
[70] L. Prasad, Y. Le Page and F.E. Smith, Inorg. Chim. Acta, 68 (1983) 45.
[71] S.-Z. Hu, D.-S. Shi, T.-S. Huang, J.-Z. Wan, Z.-X. Huang, J.-L. Yang and C.-H. Xu, Youji Huaxue, 97 (1989) 89.
[72] T.K. Chattopadhyay, A.K. Kumar, A. Roy, A.S. Bastanov, E.B. Shamuratov and Y.T. Struchkov, J. Organomet. Chem., 419 (1991) 277.
[73] M. Austin, K. Gebreyes, H.G. Kuivila, K. Swami and J.A. Zubieta, Organometallics, 6 (1987) 834.
[74] J.L. Briansò, X. Solans and J. Vicente, J. Chem. Soc., Dalton Trans., (1983) 169.
[75] C. Lòpez, A. Sànchez Gonzales, M.E. Garcia, J.S. Casas, J. Sordo, R. Graziani and U. Casellato, J. Organomet. Chem., 434 (1992) 261.
[76] M. Camalli, F. Caruso, G. Mattogno and E. Rivarola, Inorg. Chim. Acta, 170 (1990) 225.
[77] V.G. Kumar Das, C. Wei, Y. Chen Keong and T.C.W. Mak, J. Organomet. Chem., 299 (1986) 41.
[78] A.G. Davies, H.J. Milledge, D.C. Puxley and P.J. Smith, J. Chem. Soc. A, (1970) 2862.

[^0]: * Corresponding author.

[^1]: ${ }^{4} \mathrm{~L}^{4} \equiv \operatorname{bis}\left(4\right.$-methylpyrazoI-1-yI)methane; $\mathrm{L}^{\mathrm{T}} \equiv \operatorname{bis}\left(3,4,5\right.$-trimethylpyrazol-1-yl)methane; $\mathrm{L}^{\mathrm{A}} \equiv 1,2$-bis(pyrazol-1-yl)ethane; $\mathrm{L}^{\mathrm{B}} \equiv$ 1,2-bis(3,5-dimethylpyrazol-1-yl)ethane.
 ${ }^{\mathrm{h}}$ At room temperature and at molar concentration $\times 10^{-3}$ indicated in parentheses.
 " Molecular weight: in $\mathrm{CHCl}_{3}, 222$; in acetone, 277; calculated, 395.89.
 ${ }^{\text {d }}$ Molecular weight: in $\mathrm{CHCl}_{3}, 224$; in acetone, 315; calculated, 484.79.
 " Molecular weight: in $\mathrm{CHCl}_{3}, 260$; in acetone, 354; calculated, 520.03 .
 ${ }^{t}$ Molecular weight: in $\mathrm{CHCl}_{3}, 270$; in acetone, 368 ; calculated, 594.16.
 ${ }^{9} \mathrm{Cl} \%$: found, 28.9, calculated, 29.19.
 ${ }^{\mathrm{h}} \mathrm{Br} \%$: found, 54.8; calculated, 53.22.
 ${ }^{i} \mathrm{I} \%$: found, 43.5; calculated, 44.6.
 ${ }^{1} \mathrm{Cl} \%$: found, 32.9 ; calculated, 33.89 .
 ${ }^{\mathrm{m})} \mathrm{pzH} \equiv 3,4,5$-trimethylpyrazole.

[^2]: ${ }^{\text {a }}$ With respect to a room-temperature spectrum of CaSnO_{3}.

[^3]: ${ }^{a}$ Symmetry code: $x, \frac{1}{2}-y, z$.

[^4]: ${ }^{\text {a }}$ See text for definition: L^{5} is tris(pyrazol-1-yl)methane. Water:metal molar ratio in parentheses.
 ${ }^{\mathrm{h}}$ From [7].
 ${ }^{c}$ From [4].
 ${ }^{\text {d }}$ From [5].
 ${ }^{\text {e }}$ From [8].
 ${ }^{\text {t }}$ From [26].
 ${ }^{g}$ From this work.
 ${ }^{6} 3: 2$ adduct was also obtained.
 ${ }^{\text {i }}$ Breaking of the $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}$ bond occurred. 2:1 adduct of neutral pyrazole was obtained.
 Breaking of the $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}$ bond occurred. 2:1 adduct of neutral 3,4,5-trimethylpyrazole was obtained.
 ${ }^{m} 5: 4$ adduct was also obtained.
 ${ }^{n}$ Substitution of one or two halides by OH groups occurred.

